Injective Chromatic Index of $$K_4$$ -Minor Free Graphs

IF 0.6 4区 数学 Q3 MATHEMATICS
Jian-Bo Lv, Jiacong Fu, Jianxi Li
{"title":"Injective Chromatic Index of $$K_4$$ -Minor Free Graphs","authors":"Jian-Bo Lv, Jiacong Fu, Jianxi Li","doi":"10.1007/s00373-024-02807-3","DOIUrl":null,"url":null,"abstract":"<p>An edge-coloring of a graph <i>G</i> is <i>injective</i> if for any two distinct edges <span>\\(e_1\\)</span> and <span>\\(e_2\\)</span>, the colors of <span>\\(e_1\\)</span> and <span>\\(e_2\\)</span> are distinct if they are at distance 2 in <i>G</i> or in a common triangle. The injective chromatic index of <i>G</i>, <span>\\(\\chi ^\\prime _{inj}(G)\\)</span>, is the minimum number of colors needed for an injective edge-coloring of <i>G</i>. In this note, we show that every <span>\\(K_4\\)</span>-minor free graph <i>G</i> with maximum degree <span>\\(\\Delta (G)\\ge 3\\)</span> satisfies <span>\\(\\chi ^\\prime _{inj}(G)\\le 2\\Delta (G)+1\\)</span>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"21 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02807-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An edge-coloring of a graph G is injective if for any two distinct edges \(e_1\) and \(e_2\), the colors of \(e_1\) and \(e_2\) are distinct if they are at distance 2 in G or in a common triangle. The injective chromatic index of G, \(\chi ^\prime _{inj}(G)\), is the minimum number of colors needed for an injective edge-coloring of G. In this note, we show that every \(K_4\)-minor free graph G with maximum degree \(\Delta (G)\ge 3\) satisfies \(\chi ^\prime _{inj}(G)\le 2\Delta (G)+1\).

Abstract Image

$$K_4$$ 小自由图的注入色度指数
如果对于任意两条不同的边\(e_1\)和\(e_2\)来说,如果它们在 G 中的距离是 2 或者在一个共同的三角形中,那么它们的颜色就是不同的,那么图 G 的边着色就是可注入的。G 的注入色度指数((\chi ^\prime _{inj}(G)\))是 G 的注入边着色所需的最少颜色数。在本说明中,我们证明了每个具有最大度的\(\Delta (G)\ge 3\) 的\(K_4\)-minor free graph G 都满足\(\chi ^\prime _{inj}(G)\le 2\Delta (G)+1\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信