Injective Chromatic Index of $$K_4$$ -Minor Free Graphs

Pub Date : 2024-06-04 DOI:10.1007/s00373-024-02807-3
Jian-Bo Lv, Jiacong Fu, Jianxi Li
{"title":"Injective Chromatic Index of $$K_4$$ -Minor Free Graphs","authors":"Jian-Bo Lv, Jiacong Fu, Jianxi Li","doi":"10.1007/s00373-024-02807-3","DOIUrl":null,"url":null,"abstract":"<p>An edge-coloring of a graph <i>G</i> is <i>injective</i> if for any two distinct edges <span>\\(e_1\\)</span> and <span>\\(e_2\\)</span>, the colors of <span>\\(e_1\\)</span> and <span>\\(e_2\\)</span> are distinct if they are at distance 2 in <i>G</i> or in a common triangle. The injective chromatic index of <i>G</i>, <span>\\(\\chi ^\\prime _{inj}(G)\\)</span>, is the minimum number of colors needed for an injective edge-coloring of <i>G</i>. In this note, we show that every <span>\\(K_4\\)</span>-minor free graph <i>G</i> with maximum degree <span>\\(\\Delta (G)\\ge 3\\)</span> satisfies <span>\\(\\chi ^\\prime _{inj}(G)\\le 2\\Delta (G)+1\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02807-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An edge-coloring of a graph G is injective if for any two distinct edges \(e_1\) and \(e_2\), the colors of \(e_1\) and \(e_2\) are distinct if they are at distance 2 in G or in a common triangle. The injective chromatic index of G, \(\chi ^\prime _{inj}(G)\), is the minimum number of colors needed for an injective edge-coloring of G. In this note, we show that every \(K_4\)-minor free graph G with maximum degree \(\Delta (G)\ge 3\) satisfies \(\chi ^\prime _{inj}(G)\le 2\Delta (G)+1\).

Abstract Image

分享
查看原文
$$K_4$$ 小自由图的注入色度指数
如果对于任意两条不同的边\(e_1\)和\(e_2\)来说,如果它们在 G 中的距离是 2 或者在一个共同的三角形中,那么它们的颜色就是不同的,那么图 G 的边着色就是可注入的。G 的注入色度指数((\chi ^\prime _{inj}(G)\))是 G 的注入边着色所需的最少颜色数。在本说明中,我们证明了每个具有最大度的\(\Delta (G)\ge 3\) 的\(K_4\)-minor free graph G 都满足\(\chi ^\prime _{inj}(G)\le 2\Delta (G)+1\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信