{"title":"DFT and machine learning for predicting hydrogen adsorption energies on rocksalt complex oxides","authors":"Adrian Domínguez-Castro","doi":"10.1007/s00214-024-03124-x","DOIUrl":null,"url":null,"abstract":"<p>The prediction of hydrogen adsorption energies on complex oxides by integrating DFT calculations and machine learning is considered. In particular, 14 descriptors for electronic and geometric properties evaluation are adapted within a 336 hydrogen adsorption energy dataset created. Supervised learning techniques were explored to establish an accurate predictive model. With the deep neural network results, a MAE of about 0.06 eV is achieved. This research highlights the synergistic potential of DFT and machine learning for accelerating the exploration of materials for catalysis.</p>","PeriodicalId":23045,"journal":{"name":"Theoretical Chemistry Accounts","volume":"21 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Chemistry Accounts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00214-024-03124-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The prediction of hydrogen adsorption energies on complex oxides by integrating DFT calculations and machine learning is considered. In particular, 14 descriptors for electronic and geometric properties evaluation are adapted within a 336 hydrogen adsorption energy dataset created. Supervised learning techniques were explored to establish an accurate predictive model. With the deep neural network results, a MAE of about 0.06 eV is achieved. This research highlights the synergistic potential of DFT and machine learning for accelerating the exploration of materials for catalysis.
期刊介绍:
TCA publishes papers in all fields of theoretical chemistry, computational chemistry, and modeling. Fundamental studies as well as applications are included in the scope. In many cases, theorists and computational chemists have special concerns which reach either across the vertical borders of the special disciplines in chemistry or else across the horizontal borders of structure, spectra, synthesis, and dynamics. TCA is especially interested in papers that impact upon multiple chemical disciplines.