Mean field equilibrium asset pricing model with habit formation

Masaaki Fujii, Masashi Sekine
{"title":"Mean field equilibrium asset pricing model with habit formation","authors":"Masaaki Fujii, Masashi Sekine","doi":"arxiv-2406.02155","DOIUrl":null,"url":null,"abstract":"This paper presents an asset pricing model in an incomplete market involving\na large number of heterogeneous agents based on the mean field game theory. In\nthe model, we incorporate habit formation in consumption preferences, which has\nbeen widely used to explain various phenomena in financial economics. In order\nto characterize the market-clearing equilibrium, we derive a quadratic-growth\nmean field backward stochastic differential equation (BSDE) and study its\nwell-posedness and asymptotic behavior in the large population limit.\nAdditionally, we introduce an exponential quadratic Gaussian reformulation of\nthe asset pricing model, in which the solution is obtained in a semi-analytic\nform.","PeriodicalId":501478,"journal":{"name":"arXiv - QuantFin - Trading and Market Microstructure","volume":"11960 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Trading and Market Microstructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.02155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an asset pricing model in an incomplete market involving a large number of heterogeneous agents based on the mean field game theory. In the model, we incorporate habit formation in consumption preferences, which has been widely used to explain various phenomena in financial economics. In order to characterize the market-clearing equilibrium, we derive a quadratic-growth mean field backward stochastic differential equation (BSDE) and study its well-posedness and asymptotic behavior in the large population limit. Additionally, we introduce an exponential quadratic Gaussian reformulation of the asset pricing model, in which the solution is obtained in a semi-analytic form.
具有习惯养成的均值场均衡资产定价模型
本文以均值场博弈论为基础,提出了一个涉及大量异质代理人的不完全市场资产定价模型。在模型中,我们纳入了消费偏好中的习惯形成,这已被广泛用于解释金融经济学中的各种现象。为了描述市场清算均衡的特征,我们推导了一个二次增长均值场反向随机微分方程(BSDE),并研究了该方程在大量人口极限下的良好求解性和渐近行为。此外,我们还引入了一个指数二次高斯重构资产定价模型,并在其中以半解析形式求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信