Dynamics and non-integrability of the double spring pendulum

Wojciech Szumiński, Andrzej J. Maciejewski
{"title":"Dynamics and non-integrability of the double spring pendulum","authors":"Wojciech Szumiński, Andrzej J. Maciejewski","doi":"arxiv-2406.02200","DOIUrl":null,"url":null,"abstract":"This paper investigates the dynamics and integrability of the double spring\npendulum, which has great importance in studying nonlinear dynamics, chaos, and\nbifurcations. Being a Hamiltonian system with three degrees of freedom, its\nanalysis presents a significant challenge. To gain insight into the system's\ndynamics, we employ various numerical methods, including Lyapunov exponents\nspectra, phase-parametric diagrams, and Poincar\\'e cross-sections. The novelty\nof our work lies in the integration of these three numerical methods into one\npowerful tool. We provide a comprehensive understanding of the system's\ndynamics by identifying parameter values or initial conditions that lead to\nhyper-chaotic, chaotic, quasi-periodic, and periodic motion, which is a novel\ncontribution in the context of Hamiltonian systems. In the absence of\ngravitational potential, the system exhibits $S^1$ symmetry, and the presence\nof an additional first integral was identified using Lyapunov exponents\ndiagrams. We demonstrate the effective utilisation of Lyapunov exponents as a\npotential indicator of first integrals and integrable dynamics. The numerical\nanalysis is complemented by an analytical proof regarding the non-integrability\nof the system. This proof relies on the analysis of properties of the\ndifferential Galois group of variational equations along specific solutions of\nthe system. To facilitate this analysis, we utilised a newly developed\nextension of the Kovacic algorithm specifically designed for fourth-order\ndifferential equations. Overall, our study sheds light on the intricate\ndynamics and integrability of the double spring pendulum, offering new insights\nand methodologies for further research in this field. The article has been published in JSV, and the final version is available at\nthis link: https://doi.org/10.1016/j.jsv.2024.118550","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.02200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the dynamics and integrability of the double spring pendulum, which has great importance in studying nonlinear dynamics, chaos, and bifurcations. Being a Hamiltonian system with three degrees of freedom, its analysis presents a significant challenge. To gain insight into the system's dynamics, we employ various numerical methods, including Lyapunov exponents spectra, phase-parametric diagrams, and Poincar\'e cross-sections. The novelty of our work lies in the integration of these three numerical methods into one powerful tool. We provide a comprehensive understanding of the system's dynamics by identifying parameter values or initial conditions that lead to hyper-chaotic, chaotic, quasi-periodic, and periodic motion, which is a novel contribution in the context of Hamiltonian systems. In the absence of gravitational potential, the system exhibits $S^1$ symmetry, and the presence of an additional first integral was identified using Lyapunov exponents diagrams. We demonstrate the effective utilisation of Lyapunov exponents as a potential indicator of first integrals and integrable dynamics. The numerical analysis is complemented by an analytical proof regarding the non-integrability of the system. This proof relies on the analysis of properties of the differential Galois group of variational equations along specific solutions of the system. To facilitate this analysis, we utilised a newly developed extension of the Kovacic algorithm specifically designed for fourth-order differential equations. Overall, our study sheds light on the intricate dynamics and integrability of the double spring pendulum, offering new insights and methodologies for further research in this field. The article has been published in JSV, and the final version is available at this link: https://doi.org/10.1016/j.jsv.2024.118550
双弹簧摆的动力学和不稳定性
本文研究了双弹簧摆的动力学和可积分性,这对研究非线性动力学、混沌和分岔具有重要意义。作为一个具有三个自由度的哈密顿系统,对它的分析是一个巨大的挑战。为了深入了解该系统的动力学,我们采用了多种数值方法,包括李亚普诺夫指数谱、相位参数图和 Poincar\'e 截面图。我们工作的新颖之处在于将这三种数值方法整合为一个强大的工具。我们通过识别导致超混沌、混沌、准周期和周期运动的参数值或初始条件,提供了对系统动力学的全面理解,这是对汉密尔顿系统的一个新贡献。在没有引力势的情况下,该系统表现出$S^1$对称性,利用Lyapunov指数图确定了附加第一积分的存在。我们证明了有效利用 Lyapunov 指数作为第一积分和可积分动力学的势指标。除了数值分析之外,我们还对系统的不可整性进行了分析证明。该证明依赖于对该系统特定解的变分方程差分伽罗瓦群性质的分析。为了便于分析,我们使用了专门为四阶微分方程设计的新开发的 Kovacic 算法扩展。总之,我们的研究揭示了双弹簧摆的复杂动力学和可积分性,为这一领域的进一步研究提供了新的见解和方法。该文章已发表在《JSV》上,最终版本可从以下链接获得:https://doi.org/10.1016/j.jsv.2024.118550
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信