Merton portfolio allocation under stochastic dividends

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lorenzo Reus
{"title":"Merton portfolio allocation under stochastic dividends","authors":"Lorenzo Reus","doi":"10.1007/s11590-024-02125-w","DOIUrl":null,"url":null,"abstract":"<p>Current methodologies for finding portfolio rules under the Merton framework employ hard-to-implement numerical techniques. This work presents a methodology that can derive an allocation à la Merton in a spreadsheet, under an incomplete market with a time-varying dividend yield and long-only constraints. The first step of the method uses the martingale approach to obtain a portfolio rule in a complete artificial market. The second step derives a closed-form optimal solution satisfying the long-only constraints, from the unconstrained solution of the first step. This is done by determining closed-form Lagrangian dual processes satisfying the primal-dual optimality conditions between the true and artificial markets. The last step estimates the parameters defined in the artificial market, to then obtain analytical approximations for the hedging demand component within the optimal portfolio rule of the previous step. The methodology is tested with real market data from 16 US stocks from the Dow Jones. The results show that the proposed solution delivers higher financial wealth than the myopic solution, which does not consider the time-varying nature of the dividend yield. The sensitivity analysis carried out on the closed-form solution reveals that the difference with respect to the myopic solution increases when the price of the risky asset is more sensitive to the dividend yield, and when the dividend yield presents a higher probability of diverging from the current yield. The proposed solution also outperforms a known Merton-type solution that derives the Lagrangian dual processes in another way.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02125-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Current methodologies for finding portfolio rules under the Merton framework employ hard-to-implement numerical techniques. This work presents a methodology that can derive an allocation à la Merton in a spreadsheet, under an incomplete market with a time-varying dividend yield and long-only constraints. The first step of the method uses the martingale approach to obtain a portfolio rule in a complete artificial market. The second step derives a closed-form optimal solution satisfying the long-only constraints, from the unconstrained solution of the first step. This is done by determining closed-form Lagrangian dual processes satisfying the primal-dual optimality conditions between the true and artificial markets. The last step estimates the parameters defined in the artificial market, to then obtain analytical approximations for the hedging demand component within the optimal portfolio rule of the previous step. The methodology is tested with real market data from 16 US stocks from the Dow Jones. The results show that the proposed solution delivers higher financial wealth than the myopic solution, which does not consider the time-varying nature of the dividend yield. The sensitivity analysis carried out on the closed-form solution reveals that the difference with respect to the myopic solution increases when the price of the risky asset is more sensitive to the dividend yield, and when the dividend yield presents a higher probability of diverging from the current yield. The proposed solution also outperforms a known Merton-type solution that derives the Lagrangian dual processes in another way.

Abstract Image

随机红利下的默顿投资组合分配
目前在默顿框架下寻找投资组合规则的方法采用了难以实施的数字技术。这项研究提出了一种方法,可以在具有时变股息率和只做多限制的不完全市场下,用电子表格推导出像默顿那样的配置。该方法的第一步采用马氏方法,在一个完整的人工市场中获得投资组合规则。第二步从第一步的无约束解中得出满足只做多约束条件的闭式最优解。这是通过确定满足真实市场和人工市场之间原始-双重最优条件的闭式拉格朗日对偶过程来实现的。最后一步是估计人工市场中定义的参数,然后在上一步的最优投资组合规则中获得对冲需求部分的分析近似值。该方法利用道琼斯指数中 16 只美国股票的真实市场数据进行了测试。结果表明,与不考虑股息率时变性质的近视解决方案相比,所提出的解决方案能带来更高的财务财富。对封闭式解决方案进行的敏感性分析表明,当风险资产的价格对股息收益率更加敏感时,以及当股息收益率与当前收益率出现偏离的概率较高时,与近视解决方案的差异就会增大。所提出的解决方案还优于以另一种方式推导拉格朗日对偶过程的已知默顿型解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信