Si-Geng Li, Qiu-Ren Chen, Li Huang, Min Chen, Chen-Di Wei, Zhong-Jie Yue, Ru-Xue Liu, Chao Tong, Qing Liu
{"title":"Data-driven approach to predict the fatigue properties of ferrous metal materials using the cGAN and machine-learning algorithms","authors":"Si-Geng Li, Qiu-Ren Chen, Li Huang, Min Chen, Chen-Di Wei, Zhong-Jie Yue, Ru-Xue Liu, Chao Tong, Qing Liu","doi":"10.1007/s40436-024-00491-3","DOIUrl":null,"url":null,"abstract":"<div><p>The stress-life curve (S–N) and low-cycle strain-life curve (E–N) are the two primary representations used to characterize the fatigue behavior of a material. These material fatigue curves are essential for structural fatigue analysis. However, conducting material fatigue tests is expensive and time-intensive. To address the challenge of data limitations on ferrous metal materials, we propose a novel method that utilizes the Random Forest Algorithm and transfer learning to predict the S–N and E–N curves of ferrous materials. In addition, a data-augmentation framework is introduced using a conditional generative adversarial network (cGAN) to overcome data deficiencies. By incorporating the cGAN-generated data, the accuracy (<i>R</i><sup>2</sup>) of the Random Forest Algorithm-trained model is improved by 0.3–0.6. It is proven that the cGAN can significantly enhance the prediction accuracy of the machine-learning model and balance the cost of obtaining fatigue data from the experiment.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"12 3","pages":"447 - 464"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-024-00491-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The stress-life curve (S–N) and low-cycle strain-life curve (E–N) are the two primary representations used to characterize the fatigue behavior of a material. These material fatigue curves are essential for structural fatigue analysis. However, conducting material fatigue tests is expensive and time-intensive. To address the challenge of data limitations on ferrous metal materials, we propose a novel method that utilizes the Random Forest Algorithm and transfer learning to predict the S–N and E–N curves of ferrous materials. In addition, a data-augmentation framework is introduced using a conditional generative adversarial network (cGAN) to overcome data deficiencies. By incorporating the cGAN-generated data, the accuracy (R2) of the Random Forest Algorithm-trained model is improved by 0.3–0.6. It is proven that the cGAN can significantly enhance the prediction accuracy of the machine-learning model and balance the cost of obtaining fatigue data from the experiment.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.