Yi-Wei Huang, Xiang-Dong Gao, Perry P. Gao, Bo Ma, Yan-Xi Zhang
{"title":"Laser welding monitoring techniques based on optical diagnosis and artificial intelligence: a review","authors":"Yi-Wei Huang, Xiang-Dong Gao, Perry P. Gao, Bo Ma, Yan-Xi Zhang","doi":"10.1007/s40436-024-00493-1","DOIUrl":null,"url":null,"abstract":"<p>Laser welding is an efficient and precise joining method widely used in various industries. Real-time monitoring of the welding process is important for improving the quality of the weld products. This study provides an overview of the optical diagnostics of the laser welding process. The common welding defects and their formation mechanisms are described, starting with an introduction to the principles of laser welding. Optical signal sources are divided into radiated and external active lights, and different monitoring systems are summarized and classified. Also, the applications of artificial intelligence techniques in data processing, weld defect prediction and classification, and adaptive welding control are summarized. Finally, future research and challenges in real-time laser welding monitoring technology based on optical diagnostics are discussed. This study demonstrated that optical diagnostic techniques could acquire substantial information about the laser welding process and help identify welding defects.</p>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40436-024-00493-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Laser welding is an efficient and precise joining method widely used in various industries. Real-time monitoring of the welding process is important for improving the quality of the weld products. This study provides an overview of the optical diagnostics of the laser welding process. The common welding defects and their formation mechanisms are described, starting with an introduction to the principles of laser welding. Optical signal sources are divided into radiated and external active lights, and different monitoring systems are summarized and classified. Also, the applications of artificial intelligence techniques in data processing, weld defect prediction and classification, and adaptive welding control are summarized. Finally, future research and challenges in real-time laser welding monitoring technology based on optical diagnostics are discussed. This study demonstrated that optical diagnostic techniques could acquire substantial information about the laser welding process and help identify welding defects.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.