Critical planar Schrödinger–Poisson equations: existence, multiplicity and concentration

IF 1 3区 数学 Q1 MATHEMATICS
Yiqing Li, Vicenţiu D. Rădulescu, Binlin Zhang
{"title":"Critical planar Schrödinger–Poisson equations: existence, multiplicity and concentration","authors":"Yiqing Li, Vicenţiu D. Rădulescu, Binlin Zhang","doi":"10.1007/s00209-024-03520-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the study of the following 2-D Schrödinger–Poisson equation with critical exponential growth </p><span>$$\\begin{aligned} -\\varepsilon ^2\\Delta u+V(x)u+\\varepsilon ^{-\\alpha }(I_\\alpha *|u|^q)|u|^{q-2}u=f(u), \\end{aligned}$$</span><p>where <span>\\(\\varepsilon &gt;0\\)</span> is a parameter, <span>\\(I_\\alpha \\)</span> is the Riesz potential, <span>\\(0&lt;\\alpha &lt;2\\)</span>, <span>\\(V\\in {\\mathcal {C}}({{\\mathbb {R}}}^2,{{\\mathbb {R}}})\\)</span>, and <span>\\(f\\in {\\mathcal {C}}({{\\mathbb {R}}},{{\\mathbb {R}}})\\)</span> satisfies the critical exponential growth. By variational methods, we first prove the existence of ground state solutions for the above system with the periodic potential. Then we obtain that there exists a positive ground state solution of the above system concentrating at a global minimum of <i>V</i> in the semi-classical limit under some suitable conditions. Meanwhile, the exponential decay of this ground state solution is detected. Finally, we establish the multiplicity of positive solutions by using the Ljusternik–Schnirelmann theory.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"34 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03520-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the study of the following 2-D Schrödinger–Poisson equation with critical exponential growth

$$\begin{aligned} -\varepsilon ^2\Delta u+V(x)u+\varepsilon ^{-\alpha }(I_\alpha *|u|^q)|u|^{q-2}u=f(u), \end{aligned}$$

where \(\varepsilon >0\) is a parameter, \(I_\alpha \) is the Riesz potential, \(0<\alpha <2\), \(V\in {\mathcal {C}}({{\mathbb {R}}}^2,{{\mathbb {R}}})\), and \(f\in {\mathcal {C}}({{\mathbb {R}}},{{\mathbb {R}}})\) satisfies the critical exponential growth. By variational methods, we first prove the existence of ground state solutions for the above system with the periodic potential. Then we obtain that there exists a positive ground state solution of the above system concentrating at a global minimum of V in the semi-classical limit under some suitable conditions. Meanwhile, the exponential decay of this ground state solution is detected. Finally, we establish the multiplicity of positive solutions by using the Ljusternik–Schnirelmann theory.

临界平面薛定谔-泊松方程:存在性、多重性和集中性
本文主要研究以下具有临界指数增长的二维薛定谔-泊松方程 $$\begin{aligned} -\varepsilon ^2\Delta u+V(x)u+\varepsilon ^{-\alpha }(I_\alpha *|u|^q)|u|^{q-2}u=f(u), \end{aligned}$$其中 \(\varepsilon >;0)是一个参数,(I_\alpha \)是里兹势,(0<\alpha <;2),\(V\in {\mathcal {C}}({{mathbb {R}}}^2,{{\mathbb {R}}})\)和\(f\in {\mathcal {C}}({{mathbb {R}}},{{\mathbb {R}}})满足临界指数增长。通过变分法,我们首先证明了上述具有周期势的系统的基态解的存在性。然后我们得到,在一些合适的条件下,上述系统存在一个集中于半经典极限 V 全局最小值的正基态解。同时,我们还探测到了该基态解的指数衰减。最后,我们利用 Ljusternik-Schnirelmann 理论建立了正解的多重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信