Applications of martingale Hardy Orlicz–Lorentz–Karamata theory in Fourier analysis

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhiwei Hao, Libo Li, Ferenc Weisz
{"title":"Applications of martingale Hardy Orlicz–Lorentz–Karamata theory in Fourier analysis","authors":"Zhiwei Hao, Libo Li, Ferenc Weisz","doi":"10.1007/s43037-024-00357-7","DOIUrl":null,"url":null,"abstract":"<p>In this article, we discuss the applications of martingale Hardy Orlicz–Lorentz–Karamata spaces in Fourier analysis. More precisely, we show that the partial sums of the Walsh–Fourier series converge to the function in norm if <span>\\(f\\in L_{\\Phi ,q,b}\\)</span> with <span>\\(1&lt;p_-\\le p_+&lt;\\infty \\)</span>. The equivalence of maximal operators on martingale Hardy Orlicz–Lorentz–Karamata spaces is presented. The Fejér summability method is also studied and it is proved that the maximal Fejér operator is bounded from martingale Hardy Orlicz–Lorentz–Karamata spaces to Orlicz–Lorentz–Karamata spaces. As a consequence, we obtain conclusions about almost everywhere and norm convergence of Fejér means.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00357-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we discuss the applications of martingale Hardy Orlicz–Lorentz–Karamata spaces in Fourier analysis. More precisely, we show that the partial sums of the Walsh–Fourier series converge to the function in norm if \(f\in L_{\Phi ,q,b}\) with \(1<p_-\le p_+<\infty \). The equivalence of maximal operators on martingale Hardy Orlicz–Lorentz–Karamata spaces is presented. The Fejér summability method is also studied and it is proved that the maximal Fejér operator is bounded from martingale Hardy Orlicz–Lorentz–Karamata spaces to Orlicz–Lorentz–Karamata spaces. As a consequence, we obtain conclusions about almost everywhere and norm convergence of Fejér means.

傅立叶分析中马丁格尔-哈代-奥利奇-洛伦兹-卡拉马塔理论的应用
在这篇文章中,我们讨论了马氏哈代-奥利茨-洛伦茨-卡拉马塔空间在傅里叶分析中的应用。更确切地说,我们证明了如果 \(f\in L_{Phi ,q,b}\) with \(1<p_-\le p_+<\infty \),沃尔什-傅里叶级数的偏和收敛于函数的规范。介绍了马氏哈代奥利茨-洛伦茨-卡拉马塔空间上最大算子的等价性。我们还研究了 Fejér 可求和方法,并证明了最大 Fejér 算子从鞅 Hardy Orlicz-Lorentz-Karamata 空间到 Orlicz-Lorentz-Karamata 空间是有界的。因此,我们得到了关于费杰尔手段几乎无处收敛和规范收敛的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信