Mengjie Wei, Carolyn J. Lundquist, Luitgard Schwendenmann
{"title":"Extracellular Enzyme Activity and Stoichiometry Across Vegetated and Non-Vegetated Coastal Ecosystems","authors":"Mengjie Wei, Carolyn J. Lundquist, Luitgard Schwendenmann","doi":"10.1007/s13157-024-01824-5","DOIUrl":null,"url":null,"abstract":"<p>The conversion of organic matter by extracellular enzymes can reveal important insights into carbon and nutrient cycling. The activity and stoichiometry of hydrolytic extracellular enzymes were investigated to assess the effects of vegetation cover and sediment characteristics on microbial-enzyme-mediated decomposition in coastal ecosystems. Extracellular enzyme activity (EEA) was quantified across transects extending from mangrove to tidal flat habitats in two New Zealand coastal ecosystems that differ in mud content (sandy: Hobson Bay, muddy: Snells Beach). We determined the activity of five key hydrolyzing enzymes: β-glucosidase (hydrolyzes cellulose to glucose); β-N-acetylglucosaminidase (catalyzes the terminal reaction in chitin degradation); alkaline phosphatase (releases soluble inorganic phosphate groups from organophosphates); β-D-cellobiohydrolase (hydrolyzes cellulose to generate cellobiose); and β-xylosidase (catalyzes hemicellulose). All enzymes involved in C acquisition and in N and P cycling had higher activity at the muddy site. No habitat differences in EEA were observed at the sandy site, whereas EEA was lower in the non-vegetated habitats for some enzymes at the muddy site. Models of microbial metabolic limitations highlighted that most habitats at both muddy and sandy sites were predominately C and P limited. The EEA in these coastal wetlands was generally lower than has been reported for other terrestrial, freshwater, and estuarine ecosystems, with values often one to two orders of magnitude lower than other wetland studies. These results can be used to advance our understanding of the biogeochemical processes underpinning the response of coastal ecosystems to land-derived nutrient and sediment inputs.</p>","PeriodicalId":23640,"journal":{"name":"Wetlands","volume":"104 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wetlands","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s13157-024-01824-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The conversion of organic matter by extracellular enzymes can reveal important insights into carbon and nutrient cycling. The activity and stoichiometry of hydrolytic extracellular enzymes were investigated to assess the effects of vegetation cover and sediment characteristics on microbial-enzyme-mediated decomposition in coastal ecosystems. Extracellular enzyme activity (EEA) was quantified across transects extending from mangrove to tidal flat habitats in two New Zealand coastal ecosystems that differ in mud content (sandy: Hobson Bay, muddy: Snells Beach). We determined the activity of five key hydrolyzing enzymes: β-glucosidase (hydrolyzes cellulose to glucose); β-N-acetylglucosaminidase (catalyzes the terminal reaction in chitin degradation); alkaline phosphatase (releases soluble inorganic phosphate groups from organophosphates); β-D-cellobiohydrolase (hydrolyzes cellulose to generate cellobiose); and β-xylosidase (catalyzes hemicellulose). All enzymes involved in C acquisition and in N and P cycling had higher activity at the muddy site. No habitat differences in EEA were observed at the sandy site, whereas EEA was lower in the non-vegetated habitats for some enzymes at the muddy site. Models of microbial metabolic limitations highlighted that most habitats at both muddy and sandy sites were predominately C and P limited. The EEA in these coastal wetlands was generally lower than has been reported for other terrestrial, freshwater, and estuarine ecosystems, with values often one to two orders of magnitude lower than other wetland studies. These results can be used to advance our understanding of the biogeochemical processes underpinning the response of coastal ecosystems to land-derived nutrient and sediment inputs.
期刊介绍:
Wetlands is an international journal concerned with all aspects of wetlands biology, ecology, hydrology, water chemistry, soil and sediment characteristics, management, and laws and regulations. The journal is published 6 times per year, with the goal of centralizing the publication of pioneering wetlands work that has otherwise been spread among a myriad of journals. Since wetlands research usually requires an interdisciplinary approach, the journal in not limited to specific disciplines but seeks manuscripts reporting research results from all relevant disciplines. Manuscripts focusing on management topics and regulatory considerations relevant to wetlands are also suitable. Submissions may be in the form of articles or short notes. Timely review articles will also be considered, but the subject and content should be discussed with the Editor-in-Chief (NDSU.wetlands.editor@ndsu.edu) prior to submission. All papers published in Wetlands are reviewed by two qualified peers, an Associate Editor, and the Editor-in-Chief prior to acceptance and publication. All papers must present new information, must be factual and original, and must not have been published elsewhere.