{"title":"A Stochastic-Geometrical Framework for Object Pose Estimation Based on Mixture Models Avoiding the Correspondence Problem","authors":"Wolfgang Hoegele","doi":"10.1007/s10851-024-01200-2","DOIUrl":null,"url":null,"abstract":"<p>Pose estimation of rigid objects is a practical challenge in optical metrology and computer vision. This paper presents a novel stochastic-geometrical modeling framework for object pose estimation based on observing multiple feature points. This framework utilizes mixture models for feature point densities in object space and for interpreting real measurements. Advantages are the avoidance to resolve individual feature correspondences and to incorporate correct stochastic dependencies in multi-view applications. First, the general modeling framework is presented, second, a general algorithm for pose estimation is derived, and third, two example models (camera and lateration setup) are presented. Numerical experiments show the effectiveness of this modeling and general algorithm by presenting four simulation scenarios for three observation systems, including the dependence on measurement resolution, object deformations and measurement noise. Probabilistic modeling utilizing mixture models shows the potential for accurate and robust pose estimations while avoiding the correspondence problem.</p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":"2013 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10851-024-01200-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Pose estimation of rigid objects is a practical challenge in optical metrology and computer vision. This paper presents a novel stochastic-geometrical modeling framework for object pose estimation based on observing multiple feature points. This framework utilizes mixture models for feature point densities in object space and for interpreting real measurements. Advantages are the avoidance to resolve individual feature correspondences and to incorporate correct stochastic dependencies in multi-view applications. First, the general modeling framework is presented, second, a general algorithm for pose estimation is derived, and third, two example models (camera and lateration setup) are presented. Numerical experiments show the effectiveness of this modeling and general algorithm by presenting four simulation scenarios for three observation systems, including the dependence on measurement resolution, object deformations and measurement noise. Probabilistic modeling utilizing mixture models shows the potential for accurate and robust pose estimations while avoiding the correspondence problem.
期刊介绍:
The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles.
Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications.
The scope of the journal includes:
computational models of vision; imaging algebra and mathematical morphology
mathematical methods in reconstruction, compactification, and coding
filter theory
probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science
inverse optics
wave theory.
Specific application areas of interest include, but are not limited to:
all aspects of image formation and representation
medical, biological, industrial, geophysical, astronomical and military imaging
image analysis and image understanding
parallel and distributed computing
computer vision architecture design.