Asymptotic Expansion of the Solutions to a Regularized Boussinesq System (Theory and Numerics)

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Ahmad Safa, Hervé Le Meur, Jean-Paul Chehab, Raafat Talhouk
{"title":"Asymptotic Expansion of the Solutions to a Regularized Boussinesq System (Theory and Numerics)","authors":"Ahmad Safa,&nbsp;Hervé Le Meur,&nbsp;Jean-Paul Chehab,&nbsp;Raafat Talhouk","doi":"10.1007/s10440-024-00660-3","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the propagation of surface water waves described by the Boussinesq system. Following (Molinet et al. in Nonlinearity 34:744–775, 2021), we introduce a regularized Boussinesq system obtained by adding a non-local pseudo-differential operator define by <span>\\(\\widehat{g_{\\lambda }[\\zeta ]}=|k|^{\\lambda }\\hat{\\zeta }_{k}\\)</span> with <span>\\(\\lambda \\in ]0,2]\\)</span>. In this paper, we display a twofold approach: first, we study theoretically the existence of an asymptotic expansion for the solution to the Cauchy problem associated to this regularized Boussinesq system with respect to the regularizing parameter <span>\\(\\epsilon \\)</span>. Then, we compute numerically the function coefficients of the expansion (in <span>\\(\\epsilon \\)</span>) and verify numerically the validity of this expansion up to order 2. We also check the numerical <span>\\(L^{2}\\)</span> stability of the numerical algorithm.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"191 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-024-00660-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00660-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the propagation of surface water waves described by the Boussinesq system. Following (Molinet et al. in Nonlinearity 34:744–775, 2021), we introduce a regularized Boussinesq system obtained by adding a non-local pseudo-differential operator define by \(\widehat{g_{\lambda }[\zeta ]}=|k|^{\lambda }\hat{\zeta }_{k}\) with \(\lambda \in ]0,2]\). In this paper, we display a twofold approach: first, we study theoretically the existence of an asymptotic expansion for the solution to the Cauchy problem associated to this regularized Boussinesq system with respect to the regularizing parameter \(\epsilon \). Then, we compute numerically the function coefficients of the expansion (in \(\epsilon \)) and verify numerically the validity of this expansion up to order 2. We also check the numerical \(L^{2}\) stability of the numerical algorithm.

Abstract Image

正则化布森斯克系统解的渐近展开(理论与数值学)
我们考虑的是布森斯克系统描述的水面波的传播。继(Molinet et al. in Nonlinearity 34:744-775, 2021)之后,我们引入了一个正则化的 Boussinesq 系统,该系统通过添加一个非局部伪微分算子获得,该算子由 \(\widehat{g_{\lambda }[\zeta ]}=|k|^{\lambda }\hat{zeta }_{k}\) 与 \(\lambda \in ]0,2]\) 定义。在本文中,我们展示了一种双重方法:首先,我们从理论上研究了与该正则化布西尼斯克系统相关的考希问题解在正则化参数 (\epsilon \)方面的渐近展开的存在性。然后,我们数值计算了扩展的函数系数(以 \(\epsilon \)为单位),并数值验证了该扩展直到阶2的有效性。我们还检验了数值算法在数值上的\(L^{2}\)稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信