Ya-ru Wang, Zi-yong Hou, He Yang, Jun Zhao, Zhi-yuan Chang, Fan-mao Meng, Ling Zhang, Gui-lin Wu, Xiao-xu Huang
{"title":"Effect of initial microstructure on microstructure evolution and mechanical properties of 0.12C martensitic steels during quenching and tempering","authors":"Ya-ru Wang, Zi-yong Hou, He Yang, Jun Zhao, Zhi-yuan Chang, Fan-mao Meng, Ling Zhang, Gui-lin Wu, Xiao-xu Huang","doi":"10.1007/s42243-024-01226-1","DOIUrl":null,"url":null,"abstract":"<p>The microstructure evolution and mechanical properties of a Fe–0.12C–0.2Si–1.6Mn–0.3Cr–0.0025B (wt.%) steel with different initial microstructures, i.e., hot rolled (HR) and cold rolled–annealed (CRA), were studied through optical microscopy, scanning electron microscopy, electron channeling contrast imaging, microhardness and room temperature uniaxial tensile tests. After water quenching from 930 °C to room temperature, a fully martensitic microstructure was obtained in both as-quenched HR and CRA specimens, which shows a microhardness of 480 ± 5 HV, and no significant difference in microstructure and microhardness was observed. Tensile test results show that the product of tensile strength and total elongation (UTS × TE) of the as-quenched HR specimen, i.e., 24.1 GPa%, is higher than that of the as-quenched CRA specimen, i.e., 18.9 GPa%. While, after being tempered at 300 °C, the martensitic microstructures and mechanical properties of the two as-quenched specimens change significantly due to the synergy role of the matrix phase softening and the precipitation strengthening. Concerning the maximum UTS × TE, it is 18.9 GPa% obtained in the as-quenched CRA one, while that is 24.4 GPa% obtained in the HR specimen after tempered at 300 °C for 5 min.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01226-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The microstructure evolution and mechanical properties of a Fe–0.12C–0.2Si–1.6Mn–0.3Cr–0.0025B (wt.%) steel with different initial microstructures, i.e., hot rolled (HR) and cold rolled–annealed (CRA), were studied through optical microscopy, scanning electron microscopy, electron channeling contrast imaging, microhardness and room temperature uniaxial tensile tests. After water quenching from 930 °C to room temperature, a fully martensitic microstructure was obtained in both as-quenched HR and CRA specimens, which shows a microhardness of 480 ± 5 HV, and no significant difference in microstructure and microhardness was observed. Tensile test results show that the product of tensile strength and total elongation (UTS × TE) of the as-quenched HR specimen, i.e., 24.1 GPa%, is higher than that of the as-quenched CRA specimen, i.e., 18.9 GPa%. While, after being tempered at 300 °C, the martensitic microstructures and mechanical properties of the two as-quenched specimens change significantly due to the synergy role of the matrix phase softening and the precipitation strengthening. Concerning the maximum UTS × TE, it is 18.9 GPa% obtained in the as-quenched CRA one, while that is 24.4 GPa% obtained in the HR specimen after tempered at 300 °C for 5 min.
期刊介绍:
Publishes critically reviewed original research of archival significance
Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more
Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion
Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..