{"title":"Map monoidales and duoidal $\\infty$-categories","authors":"Takeshi Torii","doi":"arxiv-2406.00223","DOIUrl":null,"url":null,"abstract":"In this paper we give an example of duoidal $\\infty$-categories. We introduce\nmap $\\mathcal{O}$-monoidales in an $\\mathcal{O}$-monoidal $(\\infty,2)$-category\nfor an $\\infty$-operad $\\mathcal{O}^{\\otimes}$. We show that the endomorphism\nmapping $\\infty$-category of a map $\\mathcal{O}$-monoidale is a coCartesian\n$(\\Delta^{\\rm op},\\mathcal{O})$-duoidal $\\infty$-category. After that, we\nintroduce a convolution product on the mapping $\\infty$-category from an\n$\\mathcal{O}$-comonoidale to an $\\mathcal{O}$-monoidale. We show that the\n$\\mathcal{O}$-monoidal structure on the duoidal endomorphism mapping\n$\\infty$-category of a map $\\mathcal{O}$-monoidale is equivalent to the\nconvolution product on the mapping $\\infty$-category from the dual\n$\\mathcal{O}$-comonoidale to the map $\\mathcal{O}$-monoidale.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.00223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we give an example of duoidal $\infty$-categories. We introduce
map $\mathcal{O}$-monoidales in an $\mathcal{O}$-monoidal $(\infty,2)$-category
for an $\infty$-operad $\mathcal{O}^{\otimes}$. We show that the endomorphism
mapping $\infty$-category of a map $\mathcal{O}$-monoidale is a coCartesian
$(\Delta^{\rm op},\mathcal{O})$-duoidal $\infty$-category. After that, we
introduce a convolution product on the mapping $\infty$-category from an
$\mathcal{O}$-comonoidale to an $\mathcal{O}$-monoidale. We show that the
$\mathcal{O}$-monoidal structure on the duoidal endomorphism mapping
$\infty$-category of a map $\mathcal{O}$-monoidale is equivalent to the
convolution product on the mapping $\infty$-category from the dual
$\mathcal{O}$-comonoidale to the map $\mathcal{O}$-monoidale.