Strict refinement property of connected loop-free categories

Aly-Bora UlusoyCosynus, Emmanuel HaucourtCosynus
{"title":"Strict refinement property of connected loop-free categories","authors":"Aly-Bora UlusoyCosynus, Emmanuel HaucourtCosynus","doi":"arxiv-2406.01106","DOIUrl":null,"url":null,"abstract":"In this paper we study the strict refinement property for connected partial\nordersalso known as Hashimoto's Theorem. This property implies that any\nisomorphismbetween products of irreducible structures is determined is uniquely\ndeterminedas a product of isomorphisms between the factors. This refinement\nimplies asort of smallest possible decomposition for such structures. After a\nbrief recallof the necessary notion we prove that Hashimoto's theorem can be\nextendedto connected loop-free categories, i.e. categories with no non-trivial\nmorphismsendomorphisms. A special case of such categories is the category of\nconnectedcomponents, for concurrent programs without loops.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"307 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the strict refinement property for connected partial ordersalso known as Hashimoto's Theorem. This property implies that any isomorphismbetween products of irreducible structures is determined is uniquely determinedas a product of isomorphisms between the factors. This refinement implies asort of smallest possible decomposition for such structures. After a brief recallof the necessary notion we prove that Hashimoto's theorem can be extendedto connected loop-free categories, i.e. categories with no non-trivial morphismsendomorphisms. A special case of such categories is the category of connectedcomponents, for concurrent programs without loops.
连通无环范畴的严格细化属性
在本文中,我们研究了连通偏序的严格细化性质,也称为桥本定理。这一性质意味着,不可还原结构乘积之间的任何同构都被唯一地确定为因子之间同构的乘积。这一细化意味着此类结构的最小分解。在简要回顾了必要的概念之后,我们证明桥本定理可以扩展到连通的无环范畴,即没有非三态同构的范畴。这类范畴的一个特例是无循环并发程序的连接组件范畴(connectedcomponents)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信