{"title":"Numerical solutions of the EW and MEW equations using a fourth-order improvised B-spline collocation method","authors":"Guangyu Fan, Beibei Wu","doi":"10.1007/s11075-024-01853-5","DOIUrl":null,"url":null,"abstract":"<p>A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width (MEW) equation. The discretization of the spatial domain is done using the ICSCM and the Crank-Nicolson scheme is used for the discretization of the temporal domain. The nonlinear terms are processed using quasi-linearization techniques and the stability analysis of this method is performed using Fourier series analysis. The validity and accuracy of this method are verified through several numerical experiments using a single solitary wave, two solitary waves, Maxwellian initial condition, and an undular bore. Since there is an exact solution for the single wave, the error norms <span>\\(\\varvec{L_2}\\)</span> and <span>\\(\\varvec{L_{\\infty }}\\)</span> are first calculated and compared with some previous studies published in journal articles. In addition, the three conserved quantities <span>\\(\\varvec{Q}\\)</span>, <span>\\(\\varvec{M}\\)</span>, and <span>\\(\\varvec{E}\\)</span> of the problems raised during the simulation are also calculated and recorded in the table. Lastly, the comparisons of these error norms and conserved quantities show that the numerical results obtained with the proposed method are more accurate and agree well with the values of the conserved quantities obtained in some literatures using the same parameters. The main advantage of ICSCM is its ability to effectively capture solitary wave propagation and describe solitary wave collisions. It can perform solution calculations at any point in the domain, easily use larger time steps to calculate solutions at higher time levels, and produce more accurate calculation results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01853-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width (MEW) equation. The discretization of the spatial domain is done using the ICSCM and the Crank-Nicolson scheme is used for the discretization of the temporal domain. The nonlinear terms are processed using quasi-linearization techniques and the stability analysis of this method is performed using Fourier series analysis. The validity and accuracy of this method are verified through several numerical experiments using a single solitary wave, two solitary waves, Maxwellian initial condition, and an undular bore. Since there is an exact solution for the single wave, the error norms \(\varvec{L_2}\) and \(\varvec{L_{\infty }}\) are first calculated and compared with some previous studies published in journal articles. In addition, the three conserved quantities \(\varvec{Q}\), \(\varvec{M}\), and \(\varvec{E}\) of the problems raised during the simulation are also calculated and recorded in the table. Lastly, the comparisons of these error norms and conserved quantities show that the numerical results obtained with the proposed method are more accurate and agree well with the values of the conserved quantities obtained in some literatures using the same parameters. The main advantage of ICSCM is its ability to effectively capture solitary wave propagation and describe solitary wave collisions. It can perform solution calculations at any point in the domain, easily use larger time steps to calculate solutions at higher time levels, and produce more accurate calculation results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.