Towards Universal Unfolding of Detector Effects in High-Energy Physics using Denoising Diffusion Probabilistic Models

Camila Pazos, Shuchin Aeron, Pierre-Hugues Beauchemin, Vincent Croft, Martin Klassen, Taritree Wongjirad
{"title":"Towards Universal Unfolding of Detector Effects in High-Energy Physics using Denoising Diffusion Probabilistic Models","authors":"Camila Pazos, Shuchin Aeron, Pierre-Hugues Beauchemin, Vincent Croft, Martin Klassen, Taritree Wongjirad","doi":"arxiv-2406.01507","DOIUrl":null,"url":null,"abstract":"The unfolding of detector effects in experimental data is critical for\nenabling precision measurements in high-energy physics. However, traditional\nunfolding methods face challenges in scalability, flexibility, and dependence\non simulations. We introduce a novel unfolding approach using conditional\nDenoising Diffusion Probabilistic Models (cDDPM). Our method utilizes the cDDPM\nfor a non-iterative, flexible posterior sampling approach, which exhibits a\nstrong inductive bias that allows it to generalize to unseen physics processes\nwithout explicitly assuming the underlying distribution. We test our approach\nby training a single cDDPM to perform multidimensional particle-wise unfolding\nfor a variety of physics processes, including those not seen during training.\nOur results highlight the potential of this method as a step towards a\n\"universal\" unfolding tool that reduces dependence on truth-level assumptions.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The unfolding of detector effects in experimental data is critical for enabling precision measurements in high-energy physics. However, traditional unfolding methods face challenges in scalability, flexibility, and dependence on simulations. We introduce a novel unfolding approach using conditional Denoising Diffusion Probabilistic Models (cDDPM). Our method utilizes the cDDPM for a non-iterative, flexible posterior sampling approach, which exhibits a strong inductive bias that allows it to generalize to unseen physics processes without explicitly assuming the underlying distribution. We test our approach by training a single cDDPM to perform multidimensional particle-wise unfolding for a variety of physics processes, including those not seen during training. Our results highlight the potential of this method as a step towards a "universal" unfolding tool that reduces dependence on truth-level assumptions.
利用去噪扩散概率模型实现高能物理中探测器效应的普遍展开
在实验数据中展开探测器效应对于实现高能物理的精确测量至关重要。然而,传统的展开方法在可扩展性、灵活性和对模拟的依赖性方面面临挑战。我们介绍了一种使用条件失真扩散概率模型(cDDPM)的新型展开方法。我们的方法利用 cDDPM 作为一种非迭代、灵活的后验采样方法,它表现出强烈的归纳偏差,使其能够泛化到未见的物理过程,而无需明确假设底层分布。我们通过训练单个 cDDPM 来对各种物理过程(包括训练过程中未见的物理过程)执行多维粒子式展开来测试我们的方法。我们的结果凸显了这种方法的潜力,它是向 "通用 "展开工具迈出的一步,减少了对真理级假设的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信