Towards latent space evolution of spatiotemporal dynamics of six-dimensional phase space of charged particle beams

Mahindra Rautela, Alan Williams, Alexander Scheinker
{"title":"Towards latent space evolution of spatiotemporal dynamics of six-dimensional phase space of charged particle beams","authors":"Mahindra Rautela, Alan Williams, Alexander Scheinker","doi":"arxiv-2406.01535","DOIUrl":null,"url":null,"abstract":"Addressing the charged particle beam diagnostics in accelerators poses a\nformidable challenge, demanding high-fidelity simulations in limited\ncomputational time. Machine learning (ML) based surrogate models have emerged\nas a promising tool for non-invasive charged particle beam diagnostics. Trained\nML models can make predictions much faster than computationally expensive\nphysics simulations. In this work, we have proposed a temporally structured\nvariational autoencoder model to autoregressively forecast the spatiotemporal\ndynamics of the 15 unique 2D projections of 6D phase space of charged particle\nbeam as it travels through the LANSCE linear accelerator. In the model, VAE\nembeds the phase space projections into a lower dimensional latent space. A\nlong-short-term memory network then learns the temporal correlations in the\nlatent space. The trained network can evolve the phase space projections across\nfurther modules provided the first few modules as inputs. The model predicts\nall the projections across different modules with low mean squared error and\nhigh structural similarity index.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the charged particle beam diagnostics in accelerators poses a formidable challenge, demanding high-fidelity simulations in limited computational time. Machine learning (ML) based surrogate models have emerged as a promising tool for non-invasive charged particle beam diagnostics. Trained ML models can make predictions much faster than computationally expensive physics simulations. In this work, we have proposed a temporally structured variational autoencoder model to autoregressively forecast the spatiotemporal dynamics of the 15 unique 2D projections of 6D phase space of charged particle beam as it travels through the LANSCE linear accelerator. In the model, VAE embeds the phase space projections into a lower dimensional latent space. A long-short-term memory network then learns the temporal correlations in the latent space. The trained network can evolve the phase space projections across further modules provided the first few modules as inputs. The model predicts all the projections across different modules with low mean squared error and high structural similarity index.
实现带电粒子束六维相空间时空动态的潜空间演化
解决加速器中的带电粒子束诊断问题是一项艰巨的挑战,需要在有限的计算时间内进行高保真模拟。基于机器学习(ML)的代用模型已成为非侵入式带电粒子束诊断的一种有前途的工具。训练有素的 ML 模型可以比计算昂贵的物理模拟更快地做出预测。在这项工作中,我们提出了一种时间结构变异自动编码器模型,用于自回归预测带电粒子束穿过 LANSCE 直线加速器时 6D 相空间的 15 个独特 2D 投影的时空动态。在该模型中,VAE 将相空间投影嵌入低维潜在空间。然后,沿短期记忆网络学习潜空间中的时间相关性。训练有素的网络可以将前几个模块作为输入,在更多模块中演化出相空间投影。该模型能预测不同模块间的所有投影,且均方误差小,结构相似度指数高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信