Classical KMS functionals and phase transitions in Poisson geometry

IF 0.6 3区 数学 Q3 MATHEMATICS
Nicolò,Drago, Stefan,Waldmann
{"title":"Classical KMS functionals and phase transitions in Poisson geometry","authors":"Nicolò,Drago, Stefan,Waldmann","doi":"10.4310/jsg.2023.v21.n5.a3","DOIUrl":null,"url":null,"abstract":"In this paper we study the convex cone of not necessarily smooth measures satisfying the classical KMS condition within the context of Poisson geometry. We discuss the general properties of KMS measures and their relation with the underlying Poisson geometry in analogy to Weinstein’s seminal work in the smooth case. Moreover, by generalizing results from the symplectic case, we focus on the case of $b$-Poisson manifolds, where we provide an almost complete characterization of the convex cone of KMS measures.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n5.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the convex cone of not necessarily smooth measures satisfying the classical KMS condition within the context of Poisson geometry. We discuss the general properties of KMS measures and their relation with the underlying Poisson geometry in analogy to Weinstein’s seminal work in the smooth case. Moreover, by generalizing results from the symplectic case, we focus on the case of $b$-Poisson manifolds, where we provide an almost complete characterization of the convex cone of KMS measures.
泊松几何中的经典 KMS 函数和相变
在本文中,我们在泊松几何的背景下研究了满足经典 KMS 条件的不一定光滑度量的凸锥。与韦恩斯坦在光滑情况下的开创性工作类似,我们讨论了 KMS 度量的一般性质及其与底层泊松几何的关系。此外,通过归纳交映情况下的结果,我们将重点放在 $b$- 泊松流形的情况下,在这种情况下,我们提供了 KMS 度量凸锥的几乎完整特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信