{"title":"Bond Properties of CFRP Externally Bonded Reinforcement on Groove in Concrete","authors":"Zehong Han, Jing Gao, Huaihui Song, Gongyi Xu","doi":"10.1186/s40069-024-00678-9","DOIUrl":null,"url":null,"abstract":"<p>Externally bonded reinforcement on groove (EBROG) is a significant reinforcement technology proposed by researchers to enhance the bond properties of reinforced concrete structural members. To understand the influence of groove size on concrete specimens of different strength, a total of 60 concrete specimens with 4 different strengths were cast with the single shear test in this paper, among which 48 EBROG specimens and 12 specimens with externally bonded reinforcement method (EBR) were used as the control group. The failure modes and failure mechanisms of specimens with various sizes and reinforcement methods were analyzed. Additionally, the test results of ultimate load, load–displacement curves, and bond-slip curves for specimens with different groove sizes were compared. The effectiveness of EBROG method in enhancing the ultimate load capacity at the bond interface of the specimens is proved. Furthermore, in situations where the volume of the groove was kept constant, the specimens with lower concrete strength and deeper groove exhibited superior bond properties. Also, the influence of groove width on bond properties was better than that of groove depth. Finally, the test results in this paper were compared with the prediction of the existing EBR and EBROG models to evaluate the performance of different models, and based on the original model, a prediction model for EBROG method in the groove region with higher accuracy was proposed.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-024-00678-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Externally bonded reinforcement on groove (EBROG) is a significant reinforcement technology proposed by researchers to enhance the bond properties of reinforced concrete structural members. To understand the influence of groove size on concrete specimens of different strength, a total of 60 concrete specimens with 4 different strengths were cast with the single shear test in this paper, among which 48 EBROG specimens and 12 specimens with externally bonded reinforcement method (EBR) were used as the control group. The failure modes and failure mechanisms of specimens with various sizes and reinforcement methods were analyzed. Additionally, the test results of ultimate load, load–displacement curves, and bond-slip curves for specimens with different groove sizes were compared. The effectiveness of EBROG method in enhancing the ultimate load capacity at the bond interface of the specimens is proved. Furthermore, in situations where the volume of the groove was kept constant, the specimens with lower concrete strength and deeper groove exhibited superior bond properties. Also, the influence of groove width on bond properties was better than that of groove depth. Finally, the test results in this paper were compared with the prediction of the existing EBR and EBROG models to evaluate the performance of different models, and based on the original model, a prediction model for EBROG method in the groove region with higher accuracy was proposed.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.