Constructing the relative Fukaya category

IF 0.6 3区 数学 Q3 MATHEMATICS
Timothy,Perutz, Nick,Sheridan
{"title":"Constructing the relative Fukaya category","authors":"Timothy,Perutz, Nick,Sheridan","doi":"10.4310/jsg.2023.v21.n5.a4","DOIUrl":null,"url":null,"abstract":"We give a definition of Seidel’s ‘relative Fukaya category’, for a smooth complex projective variety relative to a simple normal crossings divisor, under a semipositivity assumption. We use the Cieliebak–Mohnke approach to transversality via stabilizing divisors. Two features of our construction are noteworthy: that we work relative to a normal crossings divisor which supports an effective ample divisor but need not have ample components; and that our relative Fukaya category is linear over a certain ring of multivariate power series with integer coefficients.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"72 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n5.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a definition of Seidel’s ‘relative Fukaya category’, for a smooth complex projective variety relative to a simple normal crossings divisor, under a semipositivity assumption. We use the Cieliebak–Mohnke approach to transversality via stabilizing divisors. Two features of our construction are noteworthy: that we work relative to a normal crossings divisor which supports an effective ample divisor but need not have ample components; and that our relative Fukaya category is linear over a certain ring of multivariate power series with integer coefficients.
构建相对的 Fukaya 类别
我们给出了塞德尔的 "相对富卡亚范畴 "的定义,即在半正假设下,光滑复杂投影变种相对于简单正交除数的 "相对富卡亚范畴"。我们使用 Cieliebak-Mohnke 方法,通过稳定化除数来实现横断性。我们的构造有两个值得注意的特点:我们是相对于支持有效充要分数但不需要有充要分数的正交除数而言的;我们的相对富卡亚范畴是线性的,是在具有整数系数的多元幂级数的某个环上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信