Involution generators of the big mapping class group

IF 0.5 3区 数学 Q3 MATHEMATICS
Tüli̇n Altunöz, Mehmetci̇k Pamuk, Oğuz Yıldız
{"title":"Involution generators of the big mapping class group","authors":"Tüli̇n Altunöz, Mehmetci̇k Pamuk, Oğuz Yıldız","doi":"10.1142/s1793525324500171","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi>S</mi><mo>=</mo><mi>S</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> denote the infinite-type surface with <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mi>n</mi></math></span><span></span> ends, <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>n</mi><mo>∈</mo><mi>ℕ</mi></math></span><span></span>, accumulated by genus. For <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>n</mi><mo>≥</mo><mn>6</mn></math></span><span></span>, we show that the mapping class group of <span><math altimg=\"eq-00005.gif\" display=\"inline\"><mi>S</mi></math></span><span></span> is topologically generated by five involutions. When <span><math altimg=\"eq-00006.gif\" display=\"inline\"><mi>n</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, it is topologically generated by six involutions.</p>","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"39 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525324500171","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let S=S(n) denote the infinite-type surface with n ends, n, accumulated by genus. For n6, we show that the mapping class group of S is topologically generated by five involutions. When n3, it is topologically generated by six involutions.

大映射类群的卷积发电机
让 S=S(n) 表示有 n 个端点的无穷型曲面,n∈ℕ,按属累加。当 n≥6 时,我们证明 S 的映射类群由五个渐开线拓扑生成。当 n≥3 时,它由六个渐开线拓扑生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信