{"title":"On a quasimorphism of Hamiltonian diffeomorphisms and quantization","authors":"Laurent,Charles","doi":"10.4310/jsg.2023.v21.n5.a1","DOIUrl":null,"url":null,"abstract":"In the setting of geometric quantization, we associate to any prequantum bundle automorphism a unitary map of the corresponding quantum space. These maps are controlled in the semiclassical limit by two invariants of symplectic topology: the Calabi–Weinstein morphism and a quasimorphism on the universal cover of the Hamiltonian diffeomorphism group introduced by Entov, Py, Shelukhin.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n5.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the setting of geometric quantization, we associate to any prequantum bundle automorphism a unitary map of the corresponding quantum space. These maps are controlled in the semiclassical limit by two invariants of symplectic topology: the Calabi–Weinstein morphism and a quasimorphism on the universal cover of the Hamiltonian diffeomorphism group introduced by Entov, Py, Shelukhin.