Shape Constraints in Symbolic Regression using Penalized Least Squares

Viktor Martinek, Julia Reuter, Ophelia Frotscher, Sanaz Mostaghim, Markus Richter, Roland Herzog
{"title":"Shape Constraints in Symbolic Regression using Penalized Least Squares","authors":"Viktor Martinek, Julia Reuter, Ophelia Frotscher, Sanaz Mostaghim, Markus Richter, Roland Herzog","doi":"arxiv-2405.20800","DOIUrl":null,"url":null,"abstract":"We study the addition of shape constraints and their consideration during the\nparameter estimation step of symbolic regression (SR). Shape constraints serve\nas a means to introduce prior knowledge about the shape of the otherwise\nunknown model function into SR. Unlike previous works that have explored shape\nconstraints in SR, we propose minimizing shape constraint violations during\nparameter estimation using gradient-based numerical optimization. We test three algorithm variants to evaluate their performance in identifying\nthree symbolic expressions from a synthetically generated data set. This paper\nexamines two benchmark scenarios: one with varying noise levels and another\nwith reduced amounts of training data. The results indicate that incorporating\nshape constraints into the expression search is particularly beneficial when\ndata is scarce. Compared to using shape constraints only in the selection\nprocess, our approach of minimizing violations during parameter estimation\nshows a statistically significant benefit in some of our test cases, without\nbeing significantly worse in any instance.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.20800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the addition of shape constraints and their consideration during the parameter estimation step of symbolic regression (SR). Shape constraints serve as a means to introduce prior knowledge about the shape of the otherwise unknown model function into SR. Unlike previous works that have explored shape constraints in SR, we propose minimizing shape constraint violations during parameter estimation using gradient-based numerical optimization. We test three algorithm variants to evaluate their performance in identifying three symbolic expressions from a synthetically generated data set. This paper examines two benchmark scenarios: one with varying noise levels and another with reduced amounts of training data. The results indicate that incorporating shape constraints into the expression search is particularly beneficial when data is scarce. Compared to using shape constraints only in the selection process, our approach of minimizing violations during parameter estimation shows a statistically significant benefit in some of our test cases, without being significantly worse in any instance.
使用惩罚性最小二乘法的符号回归中的形状约束
我们研究了在符号回归(SR)的参数估计步骤中增加形状约束及其考虑因素。形状约束是一种在 SR 中引入关于未知模型函数形状的先验知识的方法。与之前在 SR 中探讨形状约束的工作不同,我们建议在参数估计过程中使用基于梯度的数值优化来最小化违反形状约束的情况。我们测试了三种算法变体,以评估它们在从合成生成的数据集中识别三种符号表达式时的性能。本论文对两种基准情景进行了测试:一种是噪声水平不同的情景,另一种是训练数据量减少的情景。结果表明,在数据稀缺的情况下,将形状约束纳入表达式搜索尤其有益。与仅在选择过程中使用形状约束相比,我们在参数估计过程中最小化违规的方法在一些测试案例中显示出了统计学上的显著优势,而在任何情况下都没有明显的劣势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信