Well-Posedness of the Two-Dimensional Compressible Plasma-Vacuum Interface Problem

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alessandro Morando, Paolo Secchi, Yuri Trakhinin, Paola Trebeschi, Difan Yuan
{"title":"Well-Posedness of the Two-Dimensional Compressible Plasma-Vacuum Interface Problem","authors":"Alessandro Morando,&nbsp;Paolo Secchi,&nbsp;Yuri Trakhinin,&nbsp;Paola Trebeschi,&nbsp;Difan Yuan","doi":"10.1007/s00205-024-02001-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the two-dimensional plasma-vacuum interface problem in ideal compressible magnetohydrodynamics (MHD). This is a hyperbolic-elliptic coupled system with a characteristic free boundary. In the plasma region the 2D planar flow is governed by the hyperbolic equations of ideal compressible MHD, while in the vacuum region the magnetic field obeys the elliptic system of pre-Maxwell dynamics. At the free interface moving with the velocity of plasma particles, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. The plasma-vacuum system is not isolated from the outside world, since it is driven by a given surface current which forces oscillations onto the system. We prove the local-in-time existence and uniqueness of solutions to this nonlinear free boundary problem, provided that at least one of the two magnetic fields, in the plasma or in the vacuum region, is non-zero at each point of the initial interface. The proof follows from the analysis of the linearized MHD equations in the plasma region and the elliptic system for the vacuum magnetic field, suitable tame estimates in Sobolev spaces for the full linearized problem, and a Nash–Moser iteration.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02001-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02001-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the two-dimensional plasma-vacuum interface problem in ideal compressible magnetohydrodynamics (MHD). This is a hyperbolic-elliptic coupled system with a characteristic free boundary. In the plasma region the 2D planar flow is governed by the hyperbolic equations of ideal compressible MHD, while in the vacuum region the magnetic field obeys the elliptic system of pre-Maxwell dynamics. At the free interface moving with the velocity of plasma particles, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. The plasma-vacuum system is not isolated from the outside world, since it is driven by a given surface current which forces oscillations onto the system. We prove the local-in-time existence and uniqueness of solutions to this nonlinear free boundary problem, provided that at least one of the two magnetic fields, in the plasma or in the vacuum region, is non-zero at each point of the initial interface. The proof follows from the analysis of the linearized MHD equations in the plasma region and the elliptic system for the vacuum magnetic field, suitable tame estimates in Sobolev spaces for the full linearized problem, and a Nash–Moser iteration.

二维可压缩等离子体-真空界面问题的好拟性
我们考虑了理想可压缩磁流体动力学(MHD)中的二维等离子体-真空界面问题。这是一个具有自由边界特征的双曲椭圆耦合系统。在等离子体区域,二维平面流受理想可压缩磁流体动力学的双曲方程控制,而在真空区域,磁场服从前麦克斯韦动力学的椭圆系统。在以等离子体粒子速度运动的自由界面上,总压力是连续的,两侧的磁场与边界相切。等离子体-真空系统并不是与外界隔绝的,因为它是由一个给定的表面电流驱动的,该电流会迫使系统发生振荡。我们证明了这个非线性自由边界问题解的局部时间存在性和唯一性,条件是在初始界面的每一点上,等离子体或真空区域的两个磁场中至少有一个是非零的。证明来自对等离子体区域线性化 MHD 方程和真空磁场椭圆系统的分析、完整线性化问题在索波列夫空间的适当驯服估计以及纳什-莫泽迭代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信