Growth of k-Dimensional Systoles in Congruence Coverings

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mikhail Belolipetsky, Shmuel Weinberger
{"title":"Growth of k-Dimensional Systoles in Congruence Coverings","authors":"Mikhail Belolipetsky, Shmuel Weinberger","doi":"10.1007/s00039-024-00686-7","DOIUrl":null,"url":null,"abstract":"<p>We study growth of absolute and homological <i>k</i>-dimensional systoles of arithmetic <i>n</i>-manifolds along congruence coverings. Our main interest is in the growth of systoles of manifolds whose real rank <i>r</i>≥2. We observe, in particular, that in some cases for <i>k</i>=<i>r</i> the growth function tends to oscillate between a power of a logarithm and a power function of the degree of the covering. This is a new phenomenon. We also prove the expected polylogarithmic and constant power bounds for small and large <i>k</i>, respectively.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00686-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study growth of absolute and homological k-dimensional systoles of arithmetic n-manifolds along congruence coverings. Our main interest is in the growth of systoles of manifolds whose real rank r≥2. We observe, in particular, that in some cases for k=r the growth function tends to oscillate between a power of a logarithm and a power function of the degree of the covering. This is a new phenomenon. We also prove the expected polylogarithmic and constant power bounds for small and large k, respectively.

Abstract Image

全等覆盖中 k 维收缩的增长
我们研究算术 n 维流形的绝对和同调 k 维系统沿全等覆盖的增长。我们的主要兴趣在于实阶 r≥2 的流形的增量。我们特别观察到,在 k=r 的某些情况下,增长函数趋向于在对数的幂函数和覆盖度的幂函数之间摇摆。这是一个新现象。我们还分别证明了小 k 和大 k 的预期多对数和常数幂边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信