Lifelike PixelPrint phantoms for assessing clinical image quality and dose reduction capabilities of a deep learning CT reconstruction algorithm.

Jessica Y Im, Sandra S Halliburton, Kai Mei, Amy E Perkins, Eddy Wong, Leonid Roshkovan, Grace J Gang, Peter B Noël
{"title":"Lifelike <i>PixelPrint</i> phantoms for assessing clinical image quality and dose reduction capabilities of a deep learning CT reconstruction algorithm.","authors":"Jessica Y Im, Sandra S Halliburton, Kai Mei, Amy E Perkins, Eddy Wong, Leonid Roshkovan, Grace J Gang, Peter B Noël","doi":"10.1117/12.3006547","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning CT reconstruction (DLR) has become increasingly popular as a method for improving image quality and reducing radiation exposure. Due to their nonlinear nature, these algorithms result in resolution and noise performance which are object-dependent. Therefore, traditional CT phantoms, which lack realistic tissue morphology, have become inadequate for assessing clinical imaging performance. We propose to utilize 3D-printed PixelPrint phantoms, which exhibit lifelike attenuation profiles, textures, and structures, as a better tool for evaluating DLR performance. In this study, we evaluate a DLR algorithm (Precise Image (PI), Philips Healthcare) using a custom PixelPrint lung phantom and perform head-to-head comparisons between DLR, iterative reconstruction, and filtered back projection (FBP) with scans acquired at a broad range of radiation exposures (CTDI<sub>vol</sub>: 0.5, 1, 2, 4, 6, 9, 12, 15, 19, and 20 mGy). We compared the performance of each resultant image using noise, peak signal to noise ratio (PSNR), structural similarity index (SSIM), feature-based similarity index (FSIM), information theoretic-based statistic similarity measure (ISSM) and universal image quality index (UIQ). Iterative reconstruction at 9 mGy matches the image quality of FBP at 12 mGy (diagnostic reference level) for all metrics, demonstrating a dose reduction capability of 25%. Meanwhile, DLR matches the image quality of diagnostic reference level FBP images at doses between 4 - 9 mGy, demonstrating dose reduction capabilities between 25% and 67%. This study shows that DLR allows for reduced radiation dose compared to both FBP and iterative reconstruction without compromising image quality. Furthermore, PixelPrint phantoms offer more realistic testing conditions compared to traditional phantoms in the evaluation of novel CT technologies. This, in turn, promotes the translation of new technologies, such as DLR, into clinical practice.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12925 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning CT reconstruction (DLR) has become increasingly popular as a method for improving image quality and reducing radiation exposure. Due to their nonlinear nature, these algorithms result in resolution and noise performance which are object-dependent. Therefore, traditional CT phantoms, which lack realistic tissue morphology, have become inadequate for assessing clinical imaging performance. We propose to utilize 3D-printed PixelPrint phantoms, which exhibit lifelike attenuation profiles, textures, and structures, as a better tool for evaluating DLR performance. In this study, we evaluate a DLR algorithm (Precise Image (PI), Philips Healthcare) using a custom PixelPrint lung phantom and perform head-to-head comparisons between DLR, iterative reconstruction, and filtered back projection (FBP) with scans acquired at a broad range of radiation exposures (CTDIvol: 0.5, 1, 2, 4, 6, 9, 12, 15, 19, and 20 mGy). We compared the performance of each resultant image using noise, peak signal to noise ratio (PSNR), structural similarity index (SSIM), feature-based similarity index (FSIM), information theoretic-based statistic similarity measure (ISSM) and universal image quality index (UIQ). Iterative reconstruction at 9 mGy matches the image quality of FBP at 12 mGy (diagnostic reference level) for all metrics, demonstrating a dose reduction capability of 25%. Meanwhile, DLR matches the image quality of diagnostic reference level FBP images at doses between 4 - 9 mGy, demonstrating dose reduction capabilities between 25% and 67%. This study shows that DLR allows for reduced radiation dose compared to both FBP and iterative reconstruction without compromising image quality. Furthermore, PixelPrint phantoms offer more realistic testing conditions compared to traditional phantoms in the evaluation of novel CT technologies. This, in turn, promotes the translation of new technologies, such as DLR, into clinical practice.

栩栩如生的 PixelPrint 模型,用于评估深度学习 CT 重建算法的临床图像质量和剂量降低能力。
深度学习 CT 重建(DLR)作为一种提高图像质量和减少辐射暴露的方法,已变得越来越流行。由于其非线性性质,这些算法的分辨率和噪声表现与对象有关。因此,缺乏真实组织形态的传统 CT 模型已不足以评估临床成像性能。我们建议利用三维打印的 PixelPrint 模型作为评估 DLR 性能的更好工具,该模型可展示逼真的衰减轮廓、纹理和结构。在本研究中,我们使用定制的 PixelPrint 肺部模型对 DLR 算法(Precise Image (PI),飞利浦医疗保健公司)进行了评估,并使用在各种辐射照射(CTDIvol:0.5、1、2、4、6、9、12、15、19 和 20 mGy)下获得的扫描结果对 DLR、迭代重建和滤波背投影 (FBP) 进行了正面比较。我们使用噪声、峰值信噪比(PSNR)、结构相似性指数(SSIM)、基于特征的相似性指数(FSIM)、基于信息论的统计相似性度量(ISSM)和通用图像质量指数(UIQ)对每种结果图像的性能进行了比较。在所有指标上,9 mGy 下的迭代重建与 12 mGy 下的 FBP(诊断参考水平)的图像质量相匹配,显示出减少 25% 剂量的能力。同时,DLR 在 4-9 mGy 剂量下的图像质量与诊断参考水平的 FBP 图像相匹配,显示出 25% 到 67% 的剂量降低能力。这项研究表明,与 FBP 和迭代重建相比,DLR 可以在不影响图像质量的情况下减少辐射剂量。此外,与传统模型相比,PixelPrint 模型在评估新型 CT 技术方面提供了更真实的测试条件。这反过来又促进了 DLR 等新技术向临床实践的转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信