Stereo reconstruction from microscopic images for computer-assisted ophthalmic surgery.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Rebekka Peter, Sofia Moreira, Eleonora Tagliabue, Matthias Hillenbrand, Rita G Nunes, Franziska Mathis-Ullrich
{"title":"Stereo reconstruction from microscopic images for computer-assisted ophthalmic surgery.","authors":"Rebekka Peter, Sofia Moreira, Eleonora Tagliabue, Matthias Hillenbrand, Rita G Nunes, Franziska Mathis-Ullrich","doi":"10.1007/s11548-024-03177-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This work presents a novel platform for stereo reconstruction in anterior segment ophthalmic surgery to enable enhanced scene understanding, especially depth perception, for advanced computer-assisted eye surgery by effectively addressing the lack of texture and corneal distortions artifacts in the surgical scene.</p><p><strong>Methods: </strong>The proposed platform for stereo reconstruction uses a two-step approach: generating a sparse 3D point cloud from microscopic images, deriving a dense 3D representation by fitting surfaces onto the point cloud, and considering geometrical priors of the eye anatomy. We incorporate a pre-processing step to rectify distortion artifacts induced by the cornea's high refractive power, achieved by aligning a 3D phenotypical cornea geometry model to the images and computing a distortion map using ray tracing.</p><p><strong>Results: </strong>The accuracy of 3D reconstruction is evaluated on stereo microscopic images of ex vivo porcine eyes, rigid phantom eyes, and synthetic photo-realistic images. The results demonstrate the potential of the proposed platform to enhance scene understanding via an accurate 3D representation of the eye and enable the estimation of instrument to layer distances in porcine eyes with a mean average error of 190  <math><mrow><mi>μ</mi> <mtext>m</mtext></mrow> </math> , comparable to the scale of surgeons' hand tremor.</p><p><strong>Conclusion: </strong>This work marks a significant advancement in stereo reconstruction for ophthalmic surgery by addressing corneal distortions, a previously often overlooked aspect in such surgical scenarios. This could improve surgical outcomes by allowing for intra-operative computer assistance, e.g., in the form of virtual distance sensors.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"605-612"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929700/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03177-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This work presents a novel platform for stereo reconstruction in anterior segment ophthalmic surgery to enable enhanced scene understanding, especially depth perception, for advanced computer-assisted eye surgery by effectively addressing the lack of texture and corneal distortions artifacts in the surgical scene.

Methods: The proposed platform for stereo reconstruction uses a two-step approach: generating a sparse 3D point cloud from microscopic images, deriving a dense 3D representation by fitting surfaces onto the point cloud, and considering geometrical priors of the eye anatomy. We incorporate a pre-processing step to rectify distortion artifacts induced by the cornea's high refractive power, achieved by aligning a 3D phenotypical cornea geometry model to the images and computing a distortion map using ray tracing.

Results: The accuracy of 3D reconstruction is evaluated on stereo microscopic images of ex vivo porcine eyes, rigid phantom eyes, and synthetic photo-realistic images. The results demonstrate the potential of the proposed platform to enhance scene understanding via an accurate 3D representation of the eye and enable the estimation of instrument to layer distances in porcine eyes with a mean average error of 190  μ m , comparable to the scale of surgeons' hand tremor.

Conclusion: This work marks a significant advancement in stereo reconstruction for ophthalmic surgery by addressing corneal distortions, a previously often overlooked aspect in such surgical scenarios. This could improve surgical outcomes by allowing for intra-operative computer assistance, e.g., in the form of virtual distance sensors.

Abstract Image

用于计算机辅助眼科手术的显微图像立体重建。
目的:本研究提出了一种用于眼科前段手术的新型立体重建平台,通过有效解决手术场景中缺乏纹理和角膜畸变伪影的问题,增强对场景的理解,特别是深度知觉,从而实现先进的计算机辅助眼科手术:拟议的立体重建平台采用两步法:从显微图像生成稀疏的三维点云,通过在点云上拟合曲面,并考虑眼部解剖学的几何先验,得出密集的三维表示。我们还加入了一个预处理步骤,通过将三维表型角膜几何模型与图像对齐,并使用光线追踪法计算失真图,纠正角膜高屈光度引起的失真伪影:结果:在活体猪眼立体显微图像、刚性假眼和合成逼真图像上评估了三维重建的准确性。结果表明,所提出的平台具有通过精确的眼球三维表示增强场景理解的潜力,并能估算猪眼中仪器到眼球层的距离,平均误差为 190 μ m,与外科医生手部震颤的程度相当:这项研究通过解决角膜变形问题,标志着眼科手术立体重建技术的重大进步。这可以通过虚拟距离传感器等形式实现术中计算机辅助,从而改善手术效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信