Multiferroic kinks and spin-flop transition in Ni2InSbO6 from first principles

Ryota Ono, Igor Solovyev, Sergey Artyukhin
{"title":"Multiferroic kinks and spin-flop transition in Ni2InSbO6 from first principles","authors":"Ryota Ono, Igor Solovyev, Sergey Artyukhin","doi":"10.1038/s44306-024-00020-9","DOIUrl":null,"url":null,"abstract":"Magnetoelectric multiferroics are key materials for next-generation spintronic devices due to their entangled magnetic and ferroelectric properties. Spiral multiferroics possess ferroelectric polarization and are particularly promising for electric control of magnetism and magnetic control of ferroelectricity. In this work, we uncover long-period incommensurate states characterized by unique multiferroic kinks in corundum nickelate Ni2InSbO6, a member of a promising family of polar magnets. Utilizing a 2-orbital S = 1 model, we derive formulas for Heisenberg and anisotropic magnetic exchanges and magnetically-induced polarization, enabling their calculations from first principles. We use these parameters in Monte Carlo and Landau theory-based calculations to reproduce experimentally observed magnetic structures and polarization dependence on the magnetic field. We predict magnetic phase transitions between flat spiral, conical spiral, canted antiferromagnetic and ferromagnetic states under increasing magnetic fields. Kinks in the spiral phases repel each other through a Yukawa-like potential arising from exchange of massive magnons. We also find that suitably directed electric fields can be used to stabilize the ferromagnetic and spiral states. The findings open a new pathway to predictive first-principles modelling of multiferroics and will inspire experiments and technological applications based on multiferroic kinks.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00020-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00020-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetoelectric multiferroics are key materials for next-generation spintronic devices due to their entangled magnetic and ferroelectric properties. Spiral multiferroics possess ferroelectric polarization and are particularly promising for electric control of magnetism and magnetic control of ferroelectricity. In this work, we uncover long-period incommensurate states characterized by unique multiferroic kinks in corundum nickelate Ni2InSbO6, a member of a promising family of polar magnets. Utilizing a 2-orbital S = 1 model, we derive formulas for Heisenberg and anisotropic magnetic exchanges and magnetically-induced polarization, enabling their calculations from first principles. We use these parameters in Monte Carlo and Landau theory-based calculations to reproduce experimentally observed magnetic structures and polarization dependence on the magnetic field. We predict magnetic phase transitions between flat spiral, conical spiral, canted antiferromagnetic and ferromagnetic states under increasing magnetic fields. Kinks in the spiral phases repel each other through a Yukawa-like potential arising from exchange of massive magnons. We also find that suitably directed electric fields can be used to stabilize the ferromagnetic and spiral states. The findings open a new pathway to predictive first-principles modelling of multiferroics and will inspire experiments and technological applications based on multiferroic kinks.

Abstract Image

从第一原理看 Ni2InSbO6 中的多铁扭结和自旋翻转转变
磁电多铁氧体具有纠缠磁性和铁电性能,是下一代自旋电子器件的关键材料。螺旋多铁氧体具有铁电极化特性,在电控磁和磁控铁电方面特别有前景。在这项研究中,我们发现了刚玉镍酸盐 Ni2InSbO6 中具有独特多铁氧体扭结特征的长周期非互斥态。利用 2 轨道 S = 1 模型,我们推导出了海森堡和各向异性磁交换以及磁致极化的公式,从而能够根据第一原理进行计算。我们在基于蒙特卡洛和朗道理论的计算中使用这些参数,再现了实验观察到的磁结构和极化对磁场的依赖性。我们预测了在磁场增大的情况下,平面螺旋、锥形螺旋、斜面反铁磁和铁磁态之间的磁相变。通过大质量磁子交换产生的类似尤卡瓦电势,螺旋相中的扭结相互排斥。我们还发现,适当定向的电场可用于稳定铁磁态和螺旋态。这些发现为多铁氧体的预测性第一原理建模开辟了一条新途径,并将激发基于多铁氧体扭结的实验和技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信