{"title":"Optimal Joint Defense and Monitoring for Networks Security under Uncertainty: A POMDP-Based Approach","authors":"Armita Kazeminajafabadi, Mahdi Imani","doi":"10.1049/2024/7966713","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The increasing interconnectivity in our infrastructure poses a significant security challenge, with external threats having the potential to penetrate and propagate throughout the network. Bayesian attack graphs have proven to be effective in capturing the propagation of attacks in complex interconnected networks. However, most existing security approaches fail to systematically account for the limitation of resources and uncertainty arising from the complexity of attacks and possible undetected compromises. To address these challenges, this paper proposes a partially observable Markov decision process (POMDP) model for network security under uncertainty. The POMDP model accounts for uncertainty in monitoring and defense processes, as well as the probabilistic attack propagation. This paper develops two security policies based on the optimal stationary defense policy for the underlying POMDP state process (i.e., a network with known compromises): the estimation-based policy that performs the defense actions corresponding to the optimal minimum mean square error state estimation and the distribution-based policy that utilizes the posterior distribution of network compromises to make defense decisions. Optimal monitoring policies are designed to specifically support each of the defense policies, allowing dynamic allocation of monitoring resources to capture network vulnerabilities/compromises. The performance of the proposed policies is examined in terms of robustness, accuracy, and uncertainty using various numerical experiments.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7966713","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/7966713","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing interconnectivity in our infrastructure poses a significant security challenge, with external threats having the potential to penetrate and propagate throughout the network. Bayesian attack graphs have proven to be effective in capturing the propagation of attacks in complex interconnected networks. However, most existing security approaches fail to systematically account for the limitation of resources and uncertainty arising from the complexity of attacks and possible undetected compromises. To address these challenges, this paper proposes a partially observable Markov decision process (POMDP) model for network security under uncertainty. The POMDP model accounts for uncertainty in monitoring and defense processes, as well as the probabilistic attack propagation. This paper develops two security policies based on the optimal stationary defense policy for the underlying POMDP state process (i.e., a network with known compromises): the estimation-based policy that performs the defense actions corresponding to the optimal minimum mean square error state estimation and the distribution-based policy that utilizes the posterior distribution of network compromises to make defense decisions. Optimal monitoring policies are designed to specifically support each of the defense policies, allowing dynamic allocation of monitoring resources to capture network vulnerabilities/compromises. The performance of the proposed policies is examined in terms of robustness, accuracy, and uncertainty using various numerical experiments.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf