Modulating hydrogen bonding through Lewis acid complexation

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Lakhya J. Mazumder, Kangkan Sarmah, Ankur K. Guha
{"title":"Modulating hydrogen bonding through Lewis acid complexation","authors":"Lakhya J. Mazumder,&nbsp;Kangkan Sarmah,&nbsp;Ankur K. Guha","doi":"10.1002/qua.27433","DOIUrl":null,"url":null,"abstract":"<p>Present calculations reveal that complexation with a Lewis acid such as BH<sub>3</sub> dramatically increases the strength of hydrogen bonding between H<sub>2</sub>O, H<sub>2</sub>S, HF, HCl, and NH<sub>3</sub> dimers. The increase in strength is attributed to the increase in electrostatic component. The interaction energies were found to increase by two to three folds (more than 50% increase in interaction energies). Detailed electronic structure analyses within the realm of quantum theory of atoms in molecules and non-covalent interaction index confirms the strengthening of hydrogen bonding due to Lewis acid complexation. Decomposition of interaction energies using symmetry adapted perturbation theory reveals that the increase in interaction energy (more than 60%) is due to the dramatic increase in electrostatic component.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27433","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Present calculations reveal that complexation with a Lewis acid such as BH3 dramatically increases the strength of hydrogen bonding between H2O, H2S, HF, HCl, and NH3 dimers. The increase in strength is attributed to the increase in electrostatic component. The interaction energies were found to increase by two to three folds (more than 50% increase in interaction energies). Detailed electronic structure analyses within the realm of quantum theory of atoms in molecules and non-covalent interaction index confirms the strengthening of hydrogen bonding due to Lewis acid complexation. Decomposition of interaction energies using symmetry adapted perturbation theory reveals that the increase in interaction energy (more than 60%) is due to the dramatic increase in electrostatic component.

Abstract Image

通过路易斯酸络合调节氢键
目前的计算显示,与路易斯酸(如 BH3)的络合会显著增加 H2O、H2S、HF、HCl 和 NH3 二聚体之间的氢键强度。强度的增加归因于静电成分的增加。研究发现,相互作用能增加了两到三倍(相互作用能增加 50%以上)。根据分子中原子的量子理论和非共价相互作用指数进行的详细电子结构分析证实,路易斯酸络合加强了氢键。使用对称性适应扰动理论对相互作用能进行分解后发现,相互作用能的增加(超过 60%)是由于静电成分的急剧增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信