Hazelnut mapping detection system using optical and radar remote sensing: Benchmarking machine learning algorithms

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Daniele Sasso , Francesco Lodato , Anna Sabatini , Giorgio Pennazza , Luca Vollero , Marco Santonico , Mario Merone
{"title":"Hazelnut mapping detection system using optical and radar remote sensing: Benchmarking machine learning algorithms","authors":"Daniele Sasso ,&nbsp;Francesco Lodato ,&nbsp;Anna Sabatini ,&nbsp;Giorgio Pennazza ,&nbsp;Luca Vollero ,&nbsp;Marco Santonico ,&nbsp;Mario Merone","doi":"10.1016/j.aiia.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>Mapping hazelnut orchards can facilitate land planning and utilization policies, supporting the development of cooperative precision farming systems. The present work faces the detection of hazelnut crops using optical and radar remote sensing data. A comparative study of Machine Learning techniques is presented. The system proposed utilizes multi-temporal data from the Sentinel-1 and Sentinel-2 datasets extracted over several years and processed with cloud tools. We provide a dataset of 62,982 labeled samples, with 16,561 samples belonging to the ‘hazelnut’ class and 46,421 samples belonging to the ‘other’ class, collected in 8 heterogeneous geographical areas of the Viterbo province. Two different comparative tests are conducted: firstly, we use a Nested 5-Fold Cross-Validation methodology to train, optimize, and compare different Machine Learning algorithms on a single area. In a second experiment, the algorithms were trained on one area and tested on the remaining seven geographical areas. The developed study demonstrates how AI analysis applied to Sentinel-1 and Sentinel-2 data is a valid technology for hazelnut mapping. From the results, it emerges that Random Forest is the classifier with the highest generalizability, achieving the best performance in the second test with an accuracy of 96% and an F1 score of 91% for the ‘hazelnut’ class.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 97-108"},"PeriodicalIF":8.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000163/pdfft?md5=3c0871cbfa7a056adc6aefce898ac420&pid=1-s2.0-S2589721724000163-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mapping hazelnut orchards can facilitate land planning and utilization policies, supporting the development of cooperative precision farming systems. The present work faces the detection of hazelnut crops using optical and radar remote sensing data. A comparative study of Machine Learning techniques is presented. The system proposed utilizes multi-temporal data from the Sentinel-1 and Sentinel-2 datasets extracted over several years and processed with cloud tools. We provide a dataset of 62,982 labeled samples, with 16,561 samples belonging to the ‘hazelnut’ class and 46,421 samples belonging to the ‘other’ class, collected in 8 heterogeneous geographical areas of the Viterbo province. Two different comparative tests are conducted: firstly, we use a Nested 5-Fold Cross-Validation methodology to train, optimize, and compare different Machine Learning algorithms on a single area. In a second experiment, the algorithms were trained on one area and tested on the remaining seven geographical areas. The developed study demonstrates how AI analysis applied to Sentinel-1 and Sentinel-2 data is a valid technology for hazelnut mapping. From the results, it emerges that Random Forest is the classifier with the highest generalizability, achieving the best performance in the second test with an accuracy of 96% and an F1 score of 91% for the ‘hazelnut’ class.

利用光学和雷达遥感的榛子绘图检测系统:机器学习算法基准测试
绘制榛子果园地图有助于制定土地规划和利用政策,支持合作精准农业系统的发展。本研究利用光学和雷达遥感数据检测榛子作物。报告对机器学习技术进行了比较研究。所提出的系统利用了从哨兵-1 和哨兵-2 数据集中提取的多年多时数据,并使用云工具进行了处理。我们提供了一个包含 62,982 个标注样本的数据集,其中 16,561 个样本属于 "榛子 "类,46,421 个样本属于 "其他 "类,该数据集收集自维泰博省的 8 个不同地理区域。我们进行了两种不同的比较测试:首先,我们使用嵌套 5 倍交叉验证方法,在单一区域内对不同的机器学习算法进行训练、优化和比较。在第二个实验中,算法在一个地区进行了训练,并在其余七个地理区域进行了测试。这项研究表明,将人工智能分析应用于哨兵-1 和哨兵-2 数据是一种有效的榛子绘图技术。结果表明,随机森林是通用性最强的分类器,在第二次测试中表现最佳,准确率达到 96%,"榛子 "类的 F1 分数达到 91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信