Xiaolei Zhang, Juan Liu, Feng Yang, Qiang Zhang, Zhihui Yang, Hayat Ali Shah
{"title":"Planning biosynthetic pathways of target molecules based on metabolic reaction prediction and AND-OR tree search","authors":"Xiaolei Zhang, Juan Liu, Feng Yang, Qiang Zhang, Zhihui Yang, Hayat Ali Shah","doi":"10.1016/j.compbiolchem.2024.108106","DOIUrl":null,"url":null,"abstract":"<div><p>Bioretrosynthesis problem is to predict synthetic routes using substrates for given natural products (NPs). However, the huge number of metabolic reactions leads to a combinatorial explosion of searching space, which is high time-consuming and costly. Here, we propose a framework called BioRetro to predict bioretrosynthesis pathways using a one-step bioretrosynthesis network, termed HybridMLP combined with AND-OR tree heuristic search. The HybridMLP predicts precursors that will produce the target NPs, while the AND-OR tree generates the iterative multi-step biosynthetic pathways. The one-step bioretrosynthesis prediction experiments are conducted on MetaNetX dataset by using HybridMLP, which achieves 46.5%, 74.6%, 81.6% in terms of the top-1, top-5, top-10 accuracies. The great performance demonstrates the effectiveness of HybridMLP in one-step bioretrosynthesis. Besides, the evaluation of two benchmark datasets reveals that BioRetro can significantly improve the speed and success rate in predicting biosynthesis pathways. In addition, the BioRetro is further shown to find the synthetic pathway of compounds, such as ginsenoside F1 with the same substrates as reported but different enzymes, which may be the novel potential enzyme to have better catalytic performance.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147692712400094X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioretrosynthesis problem is to predict synthetic routes using substrates for given natural products (NPs). However, the huge number of metabolic reactions leads to a combinatorial explosion of searching space, which is high time-consuming and costly. Here, we propose a framework called BioRetro to predict bioretrosynthesis pathways using a one-step bioretrosynthesis network, termed HybridMLP combined with AND-OR tree heuristic search. The HybridMLP predicts precursors that will produce the target NPs, while the AND-OR tree generates the iterative multi-step biosynthetic pathways. The one-step bioretrosynthesis prediction experiments are conducted on MetaNetX dataset by using HybridMLP, which achieves 46.5%, 74.6%, 81.6% in terms of the top-1, top-5, top-10 accuracies. The great performance demonstrates the effectiveness of HybridMLP in one-step bioretrosynthesis. Besides, the evaluation of two benchmark datasets reveals that BioRetro can significantly improve the speed and success rate in predicting biosynthesis pathways. In addition, the BioRetro is further shown to find the synthetic pathway of compounds, such as ginsenoside F1 with the same substrates as reported but different enzymes, which may be the novel potential enzyme to have better catalytic performance.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.