{"title":"Influence of pre-overpressure heat treatment on micro-structure and related properties of Bi-2212 round wire","authors":"Lei Yu , Hang Zhao , Jianyuan Xu , Hangwei Ding , Zhiyou Chen , Qingbin Hao , Pengcheng Huang , Wenge Chen","doi":"10.1016/j.physc.2024.1354521","DOIUrl":null,"url":null,"abstract":"<div><p>The Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+</sub><em><sub>x</sub></em> (Bi-2212) material, a high-temperature superconductor, holds significant promise for future high-field applications because of its multifilamentary, twistable production capabilities, coupled with a high upper critical field. Bi-2212 round wire (RW) is made by the powder-in-tube (PIT) technique, and Bi-2212 coils are usually being developed using the wind-and-react method and a high temperature and over-pressure (OP) heat treatment (50 atm, 890℃) is then required to achieve the high current performance. However, over-pressure (OP) heat treatment can lead to a reduction in wire diameter, compromising the stability of the coil structure. Addressing this issue, the pre-overpressure (pre-OP) heat treatment is used and proves effective in mitigating the reduction in Bi-2212 wire diameter. In this paper, to comprehensively investigate the impact of pre-OP heat treatment on the microstructure of Bi-2212 wire, a metallographic analysis of two kinds of Bi-2212 wires was carried out by the scanning electron microscope (SEM) and the ImageJ software. It was found that larger-area filaments experienced a greater reduction in area after pre-OP heat treatment, that pre-OP heat treatment increases the aspect ratio of filaments, and polygonal bundle structure helps maintain filament structure stability during pre-OP heat treatment. Additionally, the impact of pre-OP heat treatment on the performance of Bi-2212 wires was analyzed through critical current testing under high fields.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"622 ","pages":"Article 1354521"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424000868","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Bi2Sr2CaCu2O8+x (Bi-2212) material, a high-temperature superconductor, holds significant promise for future high-field applications because of its multifilamentary, twistable production capabilities, coupled with a high upper critical field. Bi-2212 round wire (RW) is made by the powder-in-tube (PIT) technique, and Bi-2212 coils are usually being developed using the wind-and-react method and a high temperature and over-pressure (OP) heat treatment (50 atm, 890℃) is then required to achieve the high current performance. However, over-pressure (OP) heat treatment can lead to a reduction in wire diameter, compromising the stability of the coil structure. Addressing this issue, the pre-overpressure (pre-OP) heat treatment is used and proves effective in mitigating the reduction in Bi-2212 wire diameter. In this paper, to comprehensively investigate the impact of pre-OP heat treatment on the microstructure of Bi-2212 wire, a metallographic analysis of two kinds of Bi-2212 wires was carried out by the scanning electron microscope (SEM) and the ImageJ software. It was found that larger-area filaments experienced a greater reduction in area after pre-OP heat treatment, that pre-OP heat treatment increases the aspect ratio of filaments, and polygonal bundle structure helps maintain filament structure stability during pre-OP heat treatment. Additionally, the impact of pre-OP heat treatment on the performance of Bi-2212 wires was analyzed through critical current testing under high fields.
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.