A reciprocal integral identity of coupled Poisson and Laplace equations in two arbitrary domains sharing a common boundary

IF 1.4 Q2 MATHEMATICS, APPLIED
Sai Sashankh Rao, Harris Wong
{"title":"A reciprocal integral identity of coupled Poisson and Laplace equations in two arbitrary domains sharing a common boundary","authors":"Sai Sashankh Rao,&nbsp;Harris Wong","doi":"10.1016/j.rinam.2024.100464","DOIUrl":null,"url":null,"abstract":"<div><p>In solving the coupled vapor and liquid unidirectional flows in micro heat pipes, we discovered numerically an integral identity. After asymptotic and polynomial expansions, the coupled flows yield two reciprocal systems of equations. In system A, a vapor velocity <span><math><msub><mi>U</mi><mi>A</mi></msub></math></span> obeys the Poisson equation and drives, through an interfacial boundary condition, a liquid velocity <span><math><msub><mi>W</mi><mi>A</mi></msub></math></span> that satisfies the Laplace equation. In reciprocal system B, a liquid velocity <span><math><msub><mi>W</mi><mi>B</mi></msub></math></span> obeys the Poisson equation and drives, through another interfacial boundary condition, a vapor velocity <span><math><msub><mi>U</mi><mi>B</mi></msub></math></span> that satisfies the Laplace equation. We found that the vapor volume flow rate of <span><math><msub><mi>U</mi><mi>B</mi></msub></math></span> is numerically equal to the liquid volume flow rate of <span><math><msub><mi>W</mi><mi>A</mi></msub></math></span> for seven different pipe shapes. Here, a general proof is presented for the integral identity, and some interesting implications of this identity are discussed.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100464"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000347/pdfft?md5=15ef6456818b39be2398537f95248bf5&pid=1-s2.0-S2590037424000347-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In solving the coupled vapor and liquid unidirectional flows in micro heat pipes, we discovered numerically an integral identity. After asymptotic and polynomial expansions, the coupled flows yield two reciprocal systems of equations. In system A, a vapor velocity UA obeys the Poisson equation and drives, through an interfacial boundary condition, a liquid velocity WA that satisfies the Laplace equation. In reciprocal system B, a liquid velocity WB obeys the Poisson equation and drives, through another interfacial boundary condition, a vapor velocity UB that satisfies the Laplace equation. We found that the vapor volume flow rate of UB is numerically equal to the liquid volume flow rate of WA for seven different pipe shapes. Here, a general proof is presented for the integral identity, and some interesting implications of this identity are discussed.

共享共同边界的两个任意域中耦合泊松方程和拉普拉斯方程的互积分特性
在求解微型热管中的蒸汽和液体单向耦合流时,我们在数值上发现了一个积分特性。经过渐近和多项式展开后,耦合流动产生了两个互为倒数的方程组。在系统 A 中,蒸汽速度 UA 遵循泊松方程,并通过界面边界条件驱动满足拉普拉斯方程的液体速度 WA。在倒易系统 B 中,液体速度 WB 遵循泊松方程,并通过另一个界面边界条件驱动满足拉普拉斯方程的蒸汽速度 UB。我们发现,对于七种不同形状的管道,UB 的蒸汽体积流量在数值上等于 WA 的液体体积流量。在此,我们提出了积分特性的一般证明,并讨论了这一特性的一些有趣含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信