Assessment of the precipitation kinetics of Al3Sc and Al3Li in binary alloys using an improved cluster dynamics model

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL
Senlin Cui
{"title":"Assessment of the precipitation kinetics of Al3Sc and Al3Li in binary alloys using an improved cluster dynamics model","authors":"Senlin Cui","doi":"10.1016/j.calphad.2024.102708","DOIUrl":null,"url":null,"abstract":"<div><p>Precipitation is a natural phenomenon that is known to play an important role in the strengthening of Al–Li alloys. Cluster dynamics is powerful and effective in modeling the precipitation kinetics of precipitates in heat-treatable metallic materials, especially in the early stage. In this work, a cluster dynamics model with cluster mobility is further developed by redefining the effective monomer diffusivity for self-consistently modeling multicomponent and multiphase precipitation. The precipitation kinetic data for Al<sub>3</sub>Sc in Al–Sc binary alloys and Al<sub>3</sub>Li in Al–Li binary alloys are systematically reviewed and evaluated. The metastable fcc_A1/Al<sub>3</sub>Li two-phase equilibria are reoptimized using the split four sublattice compound energy formalism to accommodate both the related phase equilibrium measurements and precipitation kinetic measurements. One set of precipitation kinetic parameters is respectively assessed for each of the two precipitate phases. The improved cluster dynamics model, together with the assessed model parameters, can reasonably reproduce the reliable experimental precipitation kinetic data of the two phases. The model parameter determination includes extensive sensitivity studies to use physically reasonable values, and the present work also studies the use of cluster mobility in modeling the early stage precipitation kinetics. The present work indicates that the obtained model parameters can be used to develop the fundamental informative CALPHAD-type precipitation kinetic database.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"86 ","pages":"Article 102708"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624000506","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Precipitation is a natural phenomenon that is known to play an important role in the strengthening of Al–Li alloys. Cluster dynamics is powerful and effective in modeling the precipitation kinetics of precipitates in heat-treatable metallic materials, especially in the early stage. In this work, a cluster dynamics model with cluster mobility is further developed by redefining the effective monomer diffusivity for self-consistently modeling multicomponent and multiphase precipitation. The precipitation kinetic data for Al3Sc in Al–Sc binary alloys and Al3Li in Al–Li binary alloys are systematically reviewed and evaluated. The metastable fcc_A1/Al3Li two-phase equilibria are reoptimized using the split four sublattice compound energy formalism to accommodate both the related phase equilibrium measurements and precipitation kinetic measurements. One set of precipitation kinetic parameters is respectively assessed for each of the two precipitate phases. The improved cluster dynamics model, together with the assessed model parameters, can reasonably reproduce the reliable experimental precipitation kinetic data of the two phases. The model parameter determination includes extensive sensitivity studies to use physically reasonable values, and the present work also studies the use of cluster mobility in modeling the early stage precipitation kinetics. The present work indicates that the obtained model parameters can be used to develop the fundamental informative CALPHAD-type precipitation kinetic database.

Abstract Image

利用改进的团簇动力学模型评估二元合金中 Al3Sc 和 Al3Li 的沉淀动力学
众所周知,析出是一种自然现象,在铝锂合金的强化过程中发挥着重要作用。团簇动力学在模拟可热处理金属材料中沉淀物的析出动力学方面非常强大和有效,尤其是在早期阶段。在这项工作中,通过重新定义有效单体扩散率,进一步建立了具有团簇流动性的团簇动力学模型,用于自洽地模拟多组分和多相沉淀。系统回顾并评估了 Al-Sc 二元合金中 Al3Sc 和 Al-Li 二元合金中 Al3Li 的沉淀动力学数据。使用分裂四亚晶格复合能形式主义重新优化了蜕变 fcc_A1/Al3Li 两相平衡,以适应相关相平衡测量和沉淀动力学测量。分别评估了两种沉淀相的一组沉淀动力学参数。改进后的簇动力学模型和评估的模型参数可以合理地再现这两种相的可靠实验沉淀动力学数据。模型参数的确定包括广泛的敏感性研究,以使用物理上合理的值,本研究还研究了在早期沉淀动力学建模中使用团簇流动性的问题。本工作表明,所获得的模型参数可用于开发基本的信息量丰富的 CALPHAD 型沉淀动力学数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信