Mathematical modeling of chickenpox transmission using the Laplace Adomian Decomposition Method

Q3 Mathematics
Tawakalt A. Ayoola, Amos O. Popoola, Morufu O. Olayiwola, Adedapo I. Alaje
{"title":"Mathematical modeling of chickenpox transmission using the Laplace Adomian Decomposition Method","authors":"Tawakalt A. Ayoola,&nbsp;Amos O. Popoola,&nbsp;Morufu O. Olayiwola,&nbsp;Adedapo I. Alaje","doi":"10.1016/j.rico.2024.100436","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, mathematical modeling of a nonlinear differential equation was studied to investigate the effect of vaccination on the spread of chickenpox. The proof of existence and uniqueness of the positive solution and invariant region showed that the model is epidemiologically sound. We established the disease-free and endemic equilibrium states and carried out a stability analysis of the disease-free and endemic equilibrium states of the model to gain insight into the dynamics of the model. The rate of vaccination and precaution for the spread of chickenpox was a factor that influenced the basic reproductive number, which was calculated using the next-generation matrix approach. Forecasts made via numerical simulation using the Laplace Adomian Decomposition method highlight the temporal impact of vaccination on curbing the chicken pox trend.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"15 ","pages":"Article 100436"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000663/pdfft?md5=ea35191061197c76e80aa92c136f9e8d&pid=1-s2.0-S2666720724000663-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, mathematical modeling of a nonlinear differential equation was studied to investigate the effect of vaccination on the spread of chickenpox. The proof of existence and uniqueness of the positive solution and invariant region showed that the model is epidemiologically sound. We established the disease-free and endemic equilibrium states and carried out a stability analysis of the disease-free and endemic equilibrium states of the model to gain insight into the dynamics of the model. The rate of vaccination and precaution for the spread of chickenpox was a factor that influenced the basic reproductive number, which was calculated using the next-generation matrix approach. Forecasts made via numerical simulation using the Laplace Adomian Decomposition method highlight the temporal impact of vaccination on curbing the chicken pox trend.

利用拉普拉斯-阿多米安分解法建立水痘传播的数学模型
在这项工作中,我们研究了一个非线性微分方程的数学模型,以探讨接种疫苗对水痘传播的影响。正解和不变区的存在性和唯一性证明,该模型在流行病学上是合理的。我们建立了模型的无病平衡态和流行平衡态,并对模型的无病平衡态和流行平衡态进行了稳定性分析,从而深入了解了模型的动力学特性。疫苗接种率和水痘传播的预防率是影响基本繁殖数的一个因素,基本繁殖数是通过下一代矩阵法计算得出的。利用拉普拉斯-阿多米安分解法进行的数值模拟预测突出了疫苗接种对遏制水痘趋势的时间影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信