{"title":"Schauder and Calderón–Zygmund type estimates for fully nonlinear parabolic equations under “small ellipticity aperture” and applications","authors":"João Vitor da Silva , Makson S. Santos","doi":"10.1016/j.na.2024.113578","DOIUrl":null,"url":null,"abstract":"<div><p>In this manuscript, we derive some Schauder estimates for viscosity solutions to non-convex fully nonlinear second-order parabolic equations of the form: <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><mspace></mspace><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></mrow><mo>,</mo></mrow></math></span></span></span>provided that the source <span><math><mi>f</mi></math></span> and the coefficients of <span><math><mi>F</mi></math></span> are Hólder continuous functions, and <span><math><mi>F</mi></math></span> enjoys a small ellipticity aperture. Furthermore, for problems with merely bounded data, we prove that such solutions are <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mtext>Log-Lip</mtext></mrow></msup></math></span>-regular. We also obtain Calderón-Zygmund estimates for such a class of non-convex operators. Finally, we connect our results and recent estimates for fully nonlinear models in certain solution classes.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X2400097X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this manuscript, we derive some Schauder estimates for viscosity solutions to non-convex fully nonlinear second-order parabolic equations of the form: provided that the source and the coefficients of are Hólder continuous functions, and enjoys a small ellipticity aperture. Furthermore, for problems with merely bounded data, we prove that such solutions are -regular. We also obtain Calderón-Zygmund estimates for such a class of non-convex operators. Finally, we connect our results and recent estimates for fully nonlinear models in certain solution classes.
在本手稿中,我们推导了形式为非凸完全非线性二阶抛物方程的粘性解的一些 Schauder 估计值:∂tu-F(x,t,D2u)=f(x,t)inQ1=B1×(-1,0],条件是源 f 和 F 的系数是霍尔德连续函数,且 F 具有小的椭圆度孔径。此外,对于只有有界数据的问题,我们证明这些解是 C1,Log-Lip-regular 的。我们还得到了这类非凸算子的卡尔德龙-齐格蒙估计值。最后,我们将我们的结果与某些解类中完全非线性模型的最新估计联系起来。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.