{"title":"Schauder and Calderón–Zygmund type estimates for fully nonlinear parabolic equations under “small ellipticity aperture” and applications","authors":"João Vitor da Silva , Makson S. Santos","doi":"10.1016/j.na.2024.113578","DOIUrl":null,"url":null,"abstract":"<div><p>In this manuscript, we derive some Schauder estimates for viscosity solutions to non-convex fully nonlinear second-order parabolic equations of the form: <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><mspace></mspace><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></mrow><mo>,</mo></mrow></math></span></span></span>provided that the source <span><math><mi>f</mi></math></span> and the coefficients of <span><math><mi>F</mi></math></span> are Hólder continuous functions, and <span><math><mi>F</mi></math></span> enjoys a small ellipticity aperture. Furthermore, for problems with merely bounded data, we prove that such solutions are <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mtext>Log-Lip</mtext></mrow></msup></math></span>-regular. We also obtain Calderón-Zygmund estimates for such a class of non-convex operators. Finally, we connect our results and recent estimates for fully nonlinear models in certain solution classes.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"246 ","pages":"Article 113578"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X2400097X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this manuscript, we derive some Schauder estimates for viscosity solutions to non-convex fully nonlinear second-order parabolic equations of the form: provided that the source and the coefficients of are Hólder continuous functions, and enjoys a small ellipticity aperture. Furthermore, for problems with merely bounded data, we prove that such solutions are -regular. We also obtain Calderón-Zygmund estimates for such a class of non-convex operators. Finally, we connect our results and recent estimates for fully nonlinear models in certain solution classes.
在本手稿中,我们推导了形式为非凸完全非线性二阶抛物方程的粘性解的一些 Schauder 估计值:∂tu-F(x,t,D2u)=f(x,t)inQ1=B1×(-1,0],条件是源 f 和 F 的系数是霍尔德连续函数,且 F 具有小的椭圆度孔径。此外,对于只有有界数据的问题,我们证明这些解是 C1,Log-Lip-regular 的。我们还得到了这类非凸算子的卡尔德龙-齐格蒙估计值。最后,我们将我们的结果与某些解类中完全非线性模型的最新估计联系起来。
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.