Parametric dependence between random vectors via copula-based divergence measures

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Steven De Keyser, Irène Gijbels
{"title":"Parametric dependence between random vectors via copula-based divergence measures","authors":"Steven De Keyser,&nbsp;Irène Gijbels","doi":"10.1016/j.jmva.2024.105336","DOIUrl":null,"url":null,"abstract":"<div><p>This article proposes copula-based dependence quantification between multiple groups of random variables of possibly different sizes via the family of <span><math><mi>Φ</mi></math></span>-divergences. An axiomatic framework for this purpose is provided, after which we focus on the absolutely continuous setting assuming copula densities exist. We consider parametric and semi-parametric frameworks, discuss estimation procedures, and report on asymptotic properties of the proposed estimators. In particular, we first concentrate on a Gaussian copula approach yielding explicit and attractive dependence coefficients for specific choices of <span><math><mi>Φ</mi></math></span>, which are more amenable for estimation. Next, general parametric copula families are considered, with special attention to nested Archimedean copulas, being a natural choice for dependence modelling of random vectors. The results are illustrated by means of examples. Simulations and a real-world application on financial data are provided as well.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"203 ","pages":"Article 105336"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000435","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes copula-based dependence quantification between multiple groups of random variables of possibly different sizes via the family of Φ-divergences. An axiomatic framework for this purpose is provided, after which we focus on the absolutely continuous setting assuming copula densities exist. We consider parametric and semi-parametric frameworks, discuss estimation procedures, and report on asymptotic properties of the proposed estimators. In particular, we first concentrate on a Gaussian copula approach yielding explicit and attractive dependence coefficients for specific choices of Φ, which are more amenable for estimation. Next, general parametric copula families are considered, with special attention to nested Archimedean copulas, being a natural choice for dependence modelling of random vectors. The results are illustrated by means of examples. Simulations and a real-world application on financial data are provided as well.

通过基于 copula 的发散度量随机向量之间的参数依赖性
本文通过 Φ-divergences 系列提出了基于 copula 的大小可能不同的多组随机变量之间的依赖量化。本文为此提供了一个公理框架,之后我们将重点放在假设存在 copula 密度的绝对连续环境上。我们考虑了参数和半参数框架,讨论了估计程序,并报告了所提估计器的渐近特性。特别是,我们首先集中讨论了高斯共轭方法,这种方法对于特定的 Φ 选择具有明确而有吸引力的依赖系数,更适于估计。接下来,我们考虑了一般参数 copula 系列,并特别关注嵌套阿基米德 copulas,它是随机向量依赖性建模的自然选择。我们通过实例对结果进行了说明。此外,还提供了金融数据的模拟和实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信