Oxidation resistance of Mo/Cr bilayer coating on Zr alloy in a 1200 °C steam environment

Zheng Wang , Yingpeng Zhang , Shenghao Zhou , Zhenyu Wang , Yirong Yao , Aiying Wang , Ming Li , Peiling Ke
{"title":"Oxidation resistance of Mo/Cr bilayer coating on Zr alloy in a 1200 °C steam environment","authors":"Zheng Wang ,&nbsp;Yingpeng Zhang ,&nbsp;Shenghao Zhou ,&nbsp;Zhenyu Wang ,&nbsp;Yirong Yao ,&nbsp;Aiying Wang ,&nbsp;Ming Li ,&nbsp;Peiling Ke","doi":"10.1016/j.corcom.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>The Cr-coated Zr alloys demonstrate excellent resistance to high-temperature steam oxidation. However, the rapid diffusion pathways for oxygen formed by the inter-diffusion between the coating and alloy at high temperatures significantly affect the steam oxidation resistance of the coated alloys. To address this issue, we developed a Mo/Cr bilayer coating on Zr alloy by a combination of dc-MS and HiPIMS surface treatments. The coating exhibits outstanding steam oxidation resistance at high temperatures, resulting in a mass gain approximately 86.6% and 44.1% lower than that of the bare Zr alloy and Cr coating, respectively, after 30 min of steam oxidation at 1200 °C. This is mainly because, during the oxidation process, the Mo interface layer undergoes a transformation into a thin and high-quality double diffusion layer structure, effectively avoiding high-temperature inter-diffusion between the Cr coating and Zr alloy, thereby inhibiting the formation of oxygen diffusion pathways.</p></div>","PeriodicalId":100337,"journal":{"name":"Corrosion Communications","volume":"14 ","pages":"Pages 49-57"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667266924000148/pdfft?md5=e373b580161dd0245145c1c3452828f2&pid=1-s2.0-S2667266924000148-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667266924000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Cr-coated Zr alloys demonstrate excellent resistance to high-temperature steam oxidation. However, the rapid diffusion pathways for oxygen formed by the inter-diffusion between the coating and alloy at high temperatures significantly affect the steam oxidation resistance of the coated alloys. To address this issue, we developed a Mo/Cr bilayer coating on Zr alloy by a combination of dc-MS and HiPIMS surface treatments. The coating exhibits outstanding steam oxidation resistance at high temperatures, resulting in a mass gain approximately 86.6% and 44.1% lower than that of the bare Zr alloy and Cr coating, respectively, after 30 min of steam oxidation at 1200 °C. This is mainly because, during the oxidation process, the Mo interface layer undergoes a transformation into a thin and high-quality double diffusion layer structure, effectively avoiding high-temperature inter-diffusion between the Cr coating and Zr alloy, thereby inhibiting the formation of oxygen diffusion pathways.

Zr 合金上的 Mo/Cr 双层涂层在 1200 °C 蒸汽环境中的抗氧化性
铬涂层 Zr 合金具有出色的耐高温蒸汽氧化性。然而,高温下涂层与合金之间的相互扩散所形成的氧气快速扩散途径极大地影响了涂层合金的抗蒸汽氧化性。为解决这一问题,我们结合直流-磁场和高能离子束表面处理技术,在 Zr 合金上开发了 Mo/Cr 双层涂层。该涂层在高温下具有出色的抗蒸汽氧化性,在 1200 °C 蒸汽氧化 30 分钟后,其质量增量分别比 Zr 裸合金和 Cr 涂层低约 86.6% 和 44.1%。这主要是因为在氧化过程中,Mo 界面层转变为薄而优质的双扩散层结构,有效避免了 Cr 涂层和 Zr 合金之间的高温相互扩散,从而抑制了氧扩散通道的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信