{"title":"METTL3-modified lncRNA DSCAM-AS1 promotes breast cancer progression through inhibiting ferroptosis.","authors":"Zeming Yan, Zhongzeng Liang, Kangwei Luo, Liyan Yu, Chunyan Chen, Miao Yu, Xiaojing Guo, Mingyi Li","doi":"10.1007/s10863-024-10024-z","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies have indicated that N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) and lncRNAs play pivotal roles in human cancer. However, the underlying functions and mechanisms of m<sup>6</sup>A-lncRNA in the physiological processes of breast cancer remain unclear. Here, we found that DSCAM-AS1 is an m<sup>6</sup>A-modified lncRNA that was overexpressed in breast cancer tissues and cells, indicating poor clinical prognosis. Gain/loss functional assays suggested that DSCAM-AS1 inhibited erastin-induced ferroptosis in breast cancer cells. Mechanistically, there were remarkable m<sup>6</sup>A modification sites on both the 3'-UTR of DSCAM-AS1 and the endogenous antioxidant factor SLC7A11. M<sup>6</sup>A methyltransferase methyltransferase-like 3 (METTL3) methylated both SLC7A11 and DSCAM-AS1. Moreover, DSCAM-AS1 recognized m<sup>6</sup>A sites on the SLC7A11 mRNA, thereby enhancing its stability. Taken together, these findings indicated a potential therapeutic strategy for breast cancer ferroptosis in an m<sup>6</sup>A-dependent manner.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"451-459"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-024-10024-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous studies have indicated that N6-methyladenosine (m6A) and lncRNAs play pivotal roles in human cancer. However, the underlying functions and mechanisms of m6A-lncRNA in the physiological processes of breast cancer remain unclear. Here, we found that DSCAM-AS1 is an m6A-modified lncRNA that was overexpressed in breast cancer tissues and cells, indicating poor clinical prognosis. Gain/loss functional assays suggested that DSCAM-AS1 inhibited erastin-induced ferroptosis in breast cancer cells. Mechanistically, there were remarkable m6A modification sites on both the 3'-UTR of DSCAM-AS1 and the endogenous antioxidant factor SLC7A11. M6A methyltransferase methyltransferase-like 3 (METTL3) methylated both SLC7A11 and DSCAM-AS1. Moreover, DSCAM-AS1 recognized m6A sites on the SLC7A11 mRNA, thereby enhancing its stability. Taken together, these findings indicated a potential therapeutic strategy for breast cancer ferroptosis in an m6A-dependent manner.
期刊介绍:
The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.