Marianne Golse, Isabelle Weinhofer, Bernardo Blanco, Magali Barbier, Elise Yazbeck, Camille Huiban, Boris Chaumette, Bertrand Pichon, Ali Fatemi, Silvia Pascual, Marc Martinell, Johannes Berger, Vincent Perlbarg, Damien Galanaud, Fanny Mochel
{"title":"Leriglitazone halts disease progression in adult patients with early cerebral adrenoleukodystrophy.","authors":"Marianne Golse, Isabelle Weinhofer, Bernardo Blanco, Magali Barbier, Elise Yazbeck, Camille Huiban, Boris Chaumette, Bertrand Pichon, Ali Fatemi, Silvia Pascual, Marc Martinell, Johannes Berger, Vincent Perlbarg, Damien Galanaud, Fanny Mochel","doi":"10.1093/brain/awae169","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral adrenoleukodystrophy (CALD) is an X-linked rapidly progressive demyelinating disease leading to death usually within a few years. The standard of care is haematopoietic stem cell transplantation (HSCT), but many men are not eligible due to age, absence of a matched donor or lesions of the corticospinal tracts (CST). Based on the ADVANCE study showing that leriglitazone decreases the occurrence of CALD, we treated 13 adult CALD patients (19-67 years of age) either not eligible for HSCT (n = 8) or awaiting HSCT (n = 5). Patients were monitored every 3 months with standardized neurological scores, plasma biomarkers and brain MRI comprising lesion volumetrics and diffusion tensor imaging. The disease stabilized clinically and radiologically in 10 patients with up to 2 years of follow-up. Five patients presented with gadolinium enhancing CST lesions that all turned gadolinium negative and, remarkably, regressed in four patients. Plasma neurofilament light chain levels stabilized in all 10 patients and correlated with lesion load. The two patients who continued to deteriorate were over 60 years of age with prominent cognitive impairment. One patient died rapidly from coronavirus disease 2019. These results suggest that leriglitazone can arrest disease progression in adults with early-stage CALD and may be an alternative treatment to HSCT.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae169","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cerebral adrenoleukodystrophy (CALD) is an X-linked rapidly progressive demyelinating disease leading to death usually within a few years. The standard of care is haematopoietic stem cell transplantation (HSCT), but many men are not eligible due to age, absence of a matched donor or lesions of the corticospinal tracts (CST). Based on the ADVANCE study showing that leriglitazone decreases the occurrence of CALD, we treated 13 adult CALD patients (19-67 years of age) either not eligible for HSCT (n = 8) or awaiting HSCT (n = 5). Patients were monitored every 3 months with standardized neurological scores, plasma biomarkers and brain MRI comprising lesion volumetrics and diffusion tensor imaging. The disease stabilized clinically and radiologically in 10 patients with up to 2 years of follow-up. Five patients presented with gadolinium enhancing CST lesions that all turned gadolinium negative and, remarkably, regressed in four patients. Plasma neurofilament light chain levels stabilized in all 10 patients and correlated with lesion load. The two patients who continued to deteriorate were over 60 years of age with prominent cognitive impairment. One patient died rapidly from coronavirus disease 2019. These results suggest that leriglitazone can arrest disease progression in adults with early-stage CALD and may be an alternative treatment to HSCT.
期刊介绍:
Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.