Integrating Spatial Analyses of Genomic and Physiological Data to Understand Avian Responses to Environmental Change.

IF 2.2 3区 生物学 Q1 ZOOLOGY
Phred M Benham, Elizabeth J Beckman
{"title":"Integrating Spatial Analyses of Genomic and Physiological Data to Understand Avian Responses to Environmental Change.","authors":"Phred M Benham, Elizabeth J Beckman","doi":"10.1093/icb/icae059","DOIUrl":null,"url":null,"abstract":"<p><p>Projected rates of climate change over the next century are expected to force species to shift ranges, adapt, or acclimate to evade extinction. Predicting which of these scenarios may be most likely is a central challenge for conserving biodiversity in the immediate future. Modeling frameworks that take advantage of intraspecific variation across environmental gradients can be particularly important for meeting this challenge. While these space-for-time approaches are essential for climatic and genomic modeling approaches, mechanistic models that incorporate ecological physiology data into assessing species vulnerabilities rarely include intraspecific variation. A major reason for this gap is the general lack of empirical data on intraspecific geographic variation in avian physiological traits. In this review, we outline the evidence for and processes shaping geographic variation in avian traits. We use the example of evaporative water loss to underscore the lack of research on geographic variation, even in traits central to cooling costs in birds. We next demonstrate how shifting the focus of avian physiological research to intraspecific variation can facilitate greater integration with emerging genomics approaches. Finally, we outline important next steps for an integrative approach to advance understanding of avian physiological adaptation within species. Addressing the knowledge gaps outlined in this review will contribute to an improved predictive framework that synthesizes environmental, morphological, physiological, and genomic data to assess species specific vulnerabilities to a warming planet.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":"1792-1810"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae059","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Projected rates of climate change over the next century are expected to force species to shift ranges, adapt, or acclimate to evade extinction. Predicting which of these scenarios may be most likely is a central challenge for conserving biodiversity in the immediate future. Modeling frameworks that take advantage of intraspecific variation across environmental gradients can be particularly important for meeting this challenge. While these space-for-time approaches are essential for climatic and genomic modeling approaches, mechanistic models that incorporate ecological physiology data into assessing species vulnerabilities rarely include intraspecific variation. A major reason for this gap is the general lack of empirical data on intraspecific geographic variation in avian physiological traits. In this review, we outline the evidence for and processes shaping geographic variation in avian traits. We use the example of evaporative water loss to underscore the lack of research on geographic variation, even in traits central to cooling costs in birds. We next demonstrate how shifting the focus of avian physiological research to intraspecific variation can facilitate greater integration with emerging genomics approaches. Finally, we outline important next steps for an integrative approach to advance understanding of avian physiological adaptation within species. Addressing the knowledge gaps outlined in this review will contribute to an improved predictive framework that synthesizes environmental, morphological, physiological, and genomic data to assess species specific vulnerabilities to a warming planet.

整合基因组和生理数据的空间分析,了解鸟类对环境变化的反应。
预计下个世纪的气候变化速度将迫使物种转移范围、适应或适应环境,以避免灭绝。预测其中哪种情况最有可能发生,是近期保护生物多样性的核心挑战。利用跨环境梯度的种内变异的建模框架对于应对这一挑战尤为重要。虽然这些以时间换空间的方法对气候和基因组建模方法至关重要,但将生态生理学数据纳入物种脆弱性评估的机理模型却很少包括种内变异。造成这种差距的一个主要原因是普遍缺乏有关鸟类生理特征的种内地理变异的经验数据。在这篇综述中,我们概述了鸟类性状地理变异的证据和形成过程。我们以蒸发性失水为例,强调即使是对鸟类冷却成本至关重要的性状,也缺乏有关地理变异的研究。接下来,我们展示了如何将鸟类生理研究的重点转向种内变异,从而促进与新兴基因组学方法的进一步整合。最后,我们概述了下一步重要的综合方法,以促进对鸟类物种内生理适应性的了解。解决本综述中概述的知识差距将有助于改进预测框架,综合环境、形态学、生理学和基因组学数据来评估物种对地球变暖的脆弱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信