M Maheswari, Mohamed Uvaze Ahamed Ayoobkhan, C P Shirley, T R Vijaya Lakshmi
{"title":"Optimized attention-induced multihead convolutional neural network with efficientnetv2-fostered melanoma classification using dermoscopic images.","authors":"M Maheswari, Mohamed Uvaze Ahamed Ayoobkhan, C P Shirley, T R Vijaya Lakshmi","doi":"10.1007/s11517-024-03106-y","DOIUrl":null,"url":null,"abstract":"<p><p>Melanoma is an uncommon and dangerous type of skin cancer. Dermoscopic imaging aids skilled dermatologists in detection, yet the nuances between melanoma and non-melanoma conditions complicate diagnosis. Early identification of melanoma is vital for successful treatment, but manual diagnosis is time-consuming and requires a dermatologist with training. To overcome this issue, this article proposes an Optimized Attention-Induced Multihead Convolutional Neural Network with EfficientNetV2-fostered melanoma classification using dermoscopic images (AIMCNN-ENetV2-MC). The input pictures are extracted from the dermoscopic images dataset. Adaptive Distorted Gaussian Matched Filter (ADGMF) is used to remove the noise and maximize the superiority of skin dermoscopic images. These pre-processed images are fed to AIMCNN. The AIMCNN-ENetV2 classifies acral melanoma and benign nevus. Boosted Chimp Optimization Algorithm (BCOA) optimizes the AIMCNN-ENetV2 classifier for accurate classification. The proposed AIMCNN-ENetV2-MC is implemented using Python. The proposed approach attains an outstanding overall accuracy of 98.75%, less computation time of 98 s compared with the existing models.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03106-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Melanoma is an uncommon and dangerous type of skin cancer. Dermoscopic imaging aids skilled dermatologists in detection, yet the nuances between melanoma and non-melanoma conditions complicate diagnosis. Early identification of melanoma is vital for successful treatment, but manual diagnosis is time-consuming and requires a dermatologist with training. To overcome this issue, this article proposes an Optimized Attention-Induced Multihead Convolutional Neural Network with EfficientNetV2-fostered melanoma classification using dermoscopic images (AIMCNN-ENetV2-MC). The input pictures are extracted from the dermoscopic images dataset. Adaptive Distorted Gaussian Matched Filter (ADGMF) is used to remove the noise and maximize the superiority of skin dermoscopic images. These pre-processed images are fed to AIMCNN. The AIMCNN-ENetV2 classifies acral melanoma and benign nevus. Boosted Chimp Optimization Algorithm (BCOA) optimizes the AIMCNN-ENetV2 classifier for accurate classification. The proposed AIMCNN-ENetV2-MC is implemented using Python. The proposed approach attains an outstanding overall accuracy of 98.75%, less computation time of 98 s compared with the existing models.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).