Thomas Dirnböck, Michael Bahn, Eugenio Diaz-Pines, Ika Djukic, Michael Englisch, Karl Gartner, Günther Gollobich, Armin Hofbauer, Johannes Ingrisch, Barbara Kitzler, Karl Knaebel, Johannes Kobler, Andreas Maier, Christoph Wohner, Ivo Offenthaler, Johannes Peterseil, Gisela Pröll, Sarah Venier, Sophie Zechmeister, Anita Zolles, Stephan Glatzel
{"title":"High-resolution Carbon cycling data from 2019 to 2021 measured at six Austrian LTER sites","authors":"Thomas Dirnböck, Michael Bahn, Eugenio Diaz-Pines, Ika Djukic, Michael Englisch, Karl Gartner, Günther Gollobich, Armin Hofbauer, Johannes Ingrisch, Barbara Kitzler, Karl Knaebel, Johannes Kobler, Andreas Maier, Christoph Wohner, Ivo Offenthaler, Johannes Peterseil, Gisela Pröll, Sarah Venier, Sophie Zechmeister, Anita Zolles, Stephan Glatzel","doi":"10.5194/essd-2024-110","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Seven long-term observation sites have been established in six regions across Austria, covering major ecosystem types such as forests, grasslands and wetlands across a wide bioclimatic range. The purpose of these observations is to measure key ecosystem parameters serving as baselines for assessing the impacts of extreme climate events on the carbon cycle. The data sets collected include meteorological variables, soil microclimate, CO<sub>2</sub> fluxes and tree stem growth, all recorded at high temporal resolution between 2019 and 2021 (including one year of average climate conditions and two comparatively dry years). The DOIs of the dataset can be found in the data availability chapter. The sites will be integrated into the European Research Infrastructure for Integrated European Long-Term Ecosystem, Critical Zone, and Socio-Ecological Research (eLTER RI). Subsequently, new data covering the variables presented here will be continuously available through its data integration portal. This step will allow the data to reach its full potential for research on drought-related ecosystem carbon cycling.","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"127 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-110","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Seven long-term observation sites have been established in six regions across Austria, covering major ecosystem types such as forests, grasslands and wetlands across a wide bioclimatic range. The purpose of these observations is to measure key ecosystem parameters serving as baselines for assessing the impacts of extreme climate events on the carbon cycle. The data sets collected include meteorological variables, soil microclimate, CO2 fluxes and tree stem growth, all recorded at high temporal resolution between 2019 and 2021 (including one year of average climate conditions and two comparatively dry years). The DOIs of the dataset can be found in the data availability chapter. The sites will be integrated into the European Research Infrastructure for Integrated European Long-Term Ecosystem, Critical Zone, and Socio-Ecological Research (eLTER RI). Subsequently, new data covering the variables presented here will be continuously available through its data integration portal. This step will allow the data to reach its full potential for research on drought-related ecosystem carbon cycling.
Earth System Science DataGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍:
Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.