On the existence of solutions for a class of nonlinear fractional Schrödinger-Poisson system: Subcritical and critical cases

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lin Li, Huo Tao, Stepan Tersian
{"title":"On the existence of solutions for a class of nonlinear fractional Schrödinger-Poisson system: Subcritical and critical cases","authors":"Lin Li, Huo Tao, Stepan Tersian","doi":"10.1007/s13540-024-00296-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish the existence of standing wave solutions for a class of nonlinear fractional Schrödinger-Poisson system involving nonlinearity with subcritical and critical growth. We suppose that the potential <i>V</i> satisfies either Palais-Smale type condition or there exists a bounded domain <span>\\(\\varOmega \\)</span> such that <i>V</i> has no critical point in <span>\\(\\partial \\varOmega \\)</span>. To overcome the “lack of compactness\" of the problem, we combine Del Pino-Felmer’s penalization technique with Moser’s iteration method and some ideas from Alves [1].</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00296-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish the existence of standing wave solutions for a class of nonlinear fractional Schrödinger-Poisson system involving nonlinearity with subcritical and critical growth. We suppose that the potential V satisfies either Palais-Smale type condition or there exists a bounded domain \(\varOmega \) such that V has no critical point in \(\partial \varOmega \). To overcome the “lack of compactness" of the problem, we combine Del Pino-Felmer’s penalization technique with Moser’s iteration method and some ideas from Alves [1].

关于一类非线性分数薛定谔-泊松系统解的存在性:亚临界和临界情况
在本文中,我们建立了一类非线性分式薛定谔-泊松系统的驻波解的存在性,该系统涉及具有亚临界和临界增长的非线性。我们假设势 V 满足 Palais-Smale 类型条件,或者存在一个有界域 \(\varOmega \),使得 V 在 \(\partial \varOmega \)中没有临界点。为了克服问题的 "不紧凑性",我们将 Del Pino-Felmer 的惩罚技术与 Moser 的迭代法以及 Alves [1] 的一些观点结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信