{"title":"Smart traffic forecasting: leveraging adaptive machine learning and big data analytics for traffic flow prediction","authors":"Idriss Moumen, J. Abouchabaka, N. Rafalia","doi":"10.11591/ijai.v13.i2.pp2323-2332","DOIUrl":null,"url":null,"abstract":"The issue of road traffic congestion has become increasingly apparent in modern times. With the rise of urbanization, technological advancements, and an increase in the number of vehicles on the road, almost all major cities are experiencing poor traffic environments and low road efficiency. To address this problem, researchers have turned to diverse data resources and focused on predicting traffic flow, a crucial issue in Intelligent Transportation Systems (ITS) that can help alleviate congestion. By analyzing data from correlated roads and vehicles, such as speed, density, and flow rate, it is possible to anticipate traffic congestion and patterns. This paper presents an adaptive traffic system that utilizes supervised machine learning and big data analytics to predict traffic flow. The system monitors and extracts relevant traffic flow data, analyzes and processes the data, and stores it to enhance the model's accuracy and effectiveness. A simulation was conducted by the authors to showcase the proposed solution. The outcomes of the study carry substantial implications for transportation systems, offering valuable insights for enhancing traffic flow management.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"106 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2323-2332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The issue of road traffic congestion has become increasingly apparent in modern times. With the rise of urbanization, technological advancements, and an increase in the number of vehicles on the road, almost all major cities are experiencing poor traffic environments and low road efficiency. To address this problem, researchers have turned to diverse data resources and focused on predicting traffic flow, a crucial issue in Intelligent Transportation Systems (ITS) that can help alleviate congestion. By analyzing data from correlated roads and vehicles, such as speed, density, and flow rate, it is possible to anticipate traffic congestion and patterns. This paper presents an adaptive traffic system that utilizes supervised machine learning and big data analytics to predict traffic flow. The system monitors and extracts relevant traffic flow data, analyzes and processes the data, and stores it to enhance the model's accuracy and effectiveness. A simulation was conducted by the authors to showcase the proposed solution. The outcomes of the study carry substantial implications for transportation systems, offering valuable insights for enhancing traffic flow management.