Design of smoke detection system using deep learning and sensor fusion with recursive feature elimination cross-validation

James Julian, Annastya Bagas Dewantara, F. Wahyuni
{"title":"Design of smoke detection system using deep learning and sensor fusion with recursive feature elimination cross-validation","authors":"James Julian, Annastya Bagas Dewantara, F. Wahyuni","doi":"10.11591/ijai.v13.i2.pp1658-1667","DOIUrl":null,"url":null,"abstract":"The fire safety system is an important component that controls material and immaterial losses. Fire disasters are generally indicated by the appearance of excess smoke and changes in temperature, pressure, and changes in other parameters in the environment. Conventional smoke sensors are limited in reading parameter changes around their environment, making them less effective in early fire detection. This study aims to design a smoke detection system as an early fire detection system, using sensor fusion based on deep learning using the recursive feature elimination method with cross-validation (RFECV) using a random forest classifier used to select optimal parameters from public datasets as the basis for determining the sensor to be used. Based on the RFECV optimal feature, a deep learning algorithm was performed and obtained an accuracy of 0.99, a precision of 0.99, a recall of 1.00, and an F1 score of 0.99, with a latency time of 34.02 μs, which is 71.76% times faster than the original model.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"34 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp1658-1667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fire safety system is an important component that controls material and immaterial losses. Fire disasters are generally indicated by the appearance of excess smoke and changes in temperature, pressure, and changes in other parameters in the environment. Conventional smoke sensors are limited in reading parameter changes around their environment, making them less effective in early fire detection. This study aims to design a smoke detection system as an early fire detection system, using sensor fusion based on deep learning using the recursive feature elimination method with cross-validation (RFECV) using a random forest classifier used to select optimal parameters from public datasets as the basis for determining the sensor to be used. Based on the RFECV optimal feature, a deep learning algorithm was performed and obtained an accuracy of 0.99, a precision of 0.99, a recall of 1.00, and an F1 score of 0.99, with a latency time of 34.02 μs, which is 71.76% times faster than the original model.
利用深度学习和传感器融合以及递归特征消除交叉验证设计烟雾探测系统
消防系统是控制物质和非物质损失的重要组成部分。火灾一般以出现过量烟雾以及环境中温度、压力和其他参数的变化为征兆。传统的烟雾传感器在读取周围环境的参数变化方面受到限制,因此在早期火灾探测方面效果不佳。本研究旨在设计一种烟雾探测系统,作为早期火灾探测系统,采用基于深度学习的传感器融合技术,使用带有交叉验证的递归特征消除法(RFECV),使用随机森林分类器从公共数据集中选择最优参数,作为确定所用传感器的依据。根据 RFECV 最佳特征,执行了深度学习算法,获得了 0.99 的准确率、0.99 的精确率、1.00 的召回率和 0.99 的 F1 分数,延迟时间为 34.02 μs,比原始模型快 71.76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信