Numerical Investigation of the Impingement Cooling Characteristics of Sweeping Jets with Phase Change

IF 1.1 4区 工程技术 Q4 MECHANICS
W. He, A. Adam, P. Su, H. An, D. Han, C. Wang
{"title":"Numerical Investigation of the Impingement Cooling Characteristics of Sweeping Jets with Phase Change","authors":"W. He, A. Adam, P. Su, H. An, D. Han, C. Wang","doi":"10.47176/jafm.17.6.2258","DOIUrl":null,"url":null,"abstract":"This study investigates the cooling features of sweeping jets with phase changes, providing insights into how parameters affect heat transfer. The study aims to improve heat transfer by investigating the cooling effects of a sweeping jet impinging on a concave wall. The Eulerian-Lagrangian particle tracking method was used to examine the impact of Reynolds number, droplet diameter, mist capacity, and impingement distance on heat transfer properties during the sweeping jet impingement cooling. Increasing the Reynolds number from 20,000 to 35,200 results in a 7.1% and 3.3% decrease in average temperature at the axial centerline of the impingement wall, attributed to the cooling effect from droplet phase change. Decreasing droplet diameter from 20 µm to 10 µm reduces temperature amplitude by 11K. At 5% and 7.5% mist ratios, the cooling performance is similar to that of dry air. However, a mist injection of 10% significantly amplifies the cooling effect by 18.8%, providing a more efficient cooling experience. This investigation provides essential perspectives on impingement cooling, offering insights into the impact of various parameters on heat transfer enhancement.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.6.2258","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the cooling features of sweeping jets with phase changes, providing insights into how parameters affect heat transfer. The study aims to improve heat transfer by investigating the cooling effects of a sweeping jet impinging on a concave wall. The Eulerian-Lagrangian particle tracking method was used to examine the impact of Reynolds number, droplet diameter, mist capacity, and impingement distance on heat transfer properties during the sweeping jet impingement cooling. Increasing the Reynolds number from 20,000 to 35,200 results in a 7.1% and 3.3% decrease in average temperature at the axial centerline of the impingement wall, attributed to the cooling effect from droplet phase change. Decreasing droplet diameter from 20 µm to 10 µm reduces temperature amplitude by 11K. At 5% and 7.5% mist ratios, the cooling performance is similar to that of dry air. However, a mist injection of 10% significantly amplifies the cooling effect by 18.8%, providing a more efficient cooling experience. This investigation provides essential perspectives on impingement cooling, offering insights into the impact of various parameters on heat transfer enhancement.
相变扫掠射流的撞击冷却特性数值研究
本研究调查了具有相变的扫射射流的冷却特征,为了解参数如何影响传热提供了见解。该研究旨在通过研究撞击凹壁的扫射射流的冷却效果来改善传热。研究采用欧拉-拉格朗日粒子跟踪方法,考察了雷诺数、液滴直径、雾容量和撞击距离对横扫射流撞击冷却过程中热传导特性的影响。将雷诺数从 20,000 提高到 35,200 后,撞击壁轴向中心线的平均温度分别降低了 7.1% 和 3.3%,这归因于液滴相变的冷却效应。液滴直径从 20 µm 减小到 10 µm 时,温度振幅降低了 11K。在 5%和 7.5% 的雾化比率下,冷却性能与干燥空气相似。然而,10% 的雾滴喷射可将冷却效果明显放大 18.8%,提供更高效的冷却体验。这项研究为撞击冷却提供了重要的视角,让我们深入了解了各种参数对热传导增强的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信