Multi-objective economic load dispatch using hybrid NSGA-II and PVDE techniques

Mothala Chandrashekhar, P. K. Dhal
{"title":"Multi-objective economic load dispatch using hybrid NSGA-II and PVDE techniques","authors":"Mothala Chandrashekhar, P. K. Dhal","doi":"10.11591/ijpeds.v15.i2.pp1266-1275","DOIUrl":null,"url":null,"abstract":"Over decades, numerous methods have been used to optimize objective functions. Where cost and emissions clash. The improved non-dominated sorting genetic algorithm (NSGA-II) employs elitism to discover the optimum value and speed convergence in multi-objective optimization problems. Population variant differential evolution algorithm alters differential evolution (DE). The main distinction between DE and population variant differential evolution algorithm (PVDE) is population replenishment. NSGA-II and PVDE are combined in the suggested hybrid approach. The hybrid technique solves multi-objective optimization problems efficiently by combining two or more methods. The hybrid technique solves multi-objective optimization problems well. This optimization problem pits cost vs pollution. The hybrid approach exposes half the population to the NSGA-II algorithm and half to the PVDE algorithm. In optimization problems with opposing aims, such as minimizing costs and emissions, a hybrid technique is utilized to find the optimal solution. Elitist diversity-preserving strategies avoid optimization issues becoming converging too soon. A 10-generator IEEE 39 bus test system was validated using this method. The hybrid NSGA-II and PVDE methodology achieves global optimal solutions with more durability, simplicity, and optimization performance than existing methods.","PeriodicalId":355274,"journal":{"name":"International Journal of Power Electronics and Drive Systems (IJPEDS)","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems (IJPEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijpeds.v15.i2.pp1266-1275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over decades, numerous methods have been used to optimize objective functions. Where cost and emissions clash. The improved non-dominated sorting genetic algorithm (NSGA-II) employs elitism to discover the optimum value and speed convergence in multi-objective optimization problems. Population variant differential evolution algorithm alters differential evolution (DE). The main distinction between DE and population variant differential evolution algorithm (PVDE) is population replenishment. NSGA-II and PVDE are combined in the suggested hybrid approach. The hybrid technique solves multi-objective optimization problems efficiently by combining two or more methods. The hybrid technique solves multi-objective optimization problems well. This optimization problem pits cost vs pollution. The hybrid approach exposes half the population to the NSGA-II algorithm and half to the PVDE algorithm. In optimization problems with opposing aims, such as minimizing costs and emissions, a hybrid technique is utilized to find the optimal solution. Elitist diversity-preserving strategies avoid optimization issues becoming converging too soon. A 10-generator IEEE 39 bus test system was validated using this method. The hybrid NSGA-II and PVDE methodology achieves global optimal solutions with more durability, simplicity, and optimization performance than existing methods.
利用混合 NSGA-II 和 PVDE 技术实现多目标经济负荷调度
几十年来,人们使用了许多方法来优化目标函数。当成本和排放发生冲突时。改进的非支配排序遗传算法(NSGA-II)采用精英主义来发现最优值,并加快多目标优化问题的收敛速度。种群变异差分进化算法改变了差分进化算法(DE)。差分进化算法与种群变异差分进化算法(PVDE)的主要区别在于种群补充。在建议的混合方法中,NSGA-II 和 PVDE 被结合在一起。混合技术通过结合两种或两种以上的方法来有效解决多目标优化问题。混合技术能很好地解决多目标优化问题。这个优化问题是成本与污染的对立。混合方法将一半种群用于 NSGA-II 算法,另一半种群用于 PVDE 算法。在目标对立的优化问题中,如成本和排放最小化,可以利用混合技术找到最优解。精英多样性保护策略可避免优化问题过早收敛。使用这种方法对一个 10 个发电机的 IEEE 39 总线测试系统进行了验证。与现有方法相比,NSGA-II 和 PVDE 混合方法可实现全局最优解,而且更耐用、更简单、优化性能更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信